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FOREWORD AND CONCLUSIONS

by

Wolfgang Schmidt
Dornier Luftfahrt Gmbl!

Friedrichshafcn
Fcdcral Republic of Germany

During the past years the important role of adequate mesh generation for Computational Fluid Dynamics (CFD) has
been fully recognized. Accurate mesh generation has emerged as an indespensible tool in Euler and/or Navier-Stokes
calculations. It has been amply demonstrated that the viability of a numerical solution Icpends directly on the quality of the
mesh and surface representation as measured by its spacing and resolution. Of particular interest is the mesh generation for
complex configurations, such as advanced fighter or transport aircraft, missiles, or space vehicles, where conp!cx geomctr!,.
and; or complex flowfields have to be analysed.

There exist numerous reports and proceedings on various methods with many examples such as in References I ll and
121. The present AGARD Specialists' Meeting on Mesh Generation has been direci.d t.,.wrds the application of the different
techniques available and the problems encountered if applied to complex cases.

Since two papers could not be given orally, Professor J.Steper agreed to present his paner "Generation of 241 Rod
F::i!'J:i'ds hv Slving Hyperbolic Partial Differential Equations" and Dr Paul Kutli gave a presentation on -'CFD at
NASA AMES". Professor Steger's presentation has been described in detail in References 141-161.

The meeting has been structured in five sessions, giving general surveys by papers one and two in session one, four
papers on algebraic grid generation in session two, session three with four papers on block tructured meshes, session four
with six papers on multiblock and/or adaptive meshes, and session five with five papers on unstructured meshes. The final
paper was an invited paper from the Electromagnetic Wave Propagation Panel showing the mutuality betvscen the
computation of electromagnetic wave propagation and CFD. especially in mesh generation.

A detailed evaluation of the material presented has been prepared by the technical evaluator J.Steger. His results are
published under separate cover as AGARD-AR-268 131.
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AVANT-PROPOS ET CONCLUSIONS

Au cours des derni~res ann~es, l'importance de la g~n~ration die maillages ad~quats pour l'a~rodynamnique num~rique
(CFD) a 6t universellement reconnue. La g~n~ration de maillages fiddes apparait aujord'hui comme un outil indispensable
pour la ri~solution des equations d'Euler et/ou de Navier-Stokes. 11 a t amplcment d~montri que la viabilitti des solutions
numeriques; depend directement de la qualit6 die Ia representation du maillage et de la surface a~rodynamique. teiie que
d~finie par son pas et sa resolution. La g~n~ration dle maillages pour dl, configurations complexes. telles que des a~ronefs de
combat ou die transport i~volu~s. des missiles, ou des v~hicules spatiaux, impliquant I'analyse die g~om~tries et/ou die champs
d'&oulcment complexes, est d'un int&r t tout particulier.

11 existe die nombreux rapports et comptes-rendus sur les diff~rentes mnthodes, contenant beaucoup d'exemples. tels
que jI I ou 121. Cette reunion AGARD de sp~cialisres. Sur la g~n~ration des maillages. est orient&e vers la misc en application
dies diff~rcntes techniques disponibles et les problmes rencontres lorsque ces techniques sont appliquties ii des cas
complexes.

Deux des confifrenciers ni'ayant pas pu participer la re.union, le Prof. i.Steger a bien voulo accepter die presenter une
communication sur "La generation de grilles tridlimensionelles, pour une representation affin~e die la cellule die 1'a~ronef. par
la resolution d'6quations diffkrentielles parrielles hyperboliques" et le Dr Paul Kutler a pr~sent6 une communication Sur
-1'aerod~namique numerique (CFD) a NASA AMES". Une description d~taillke de la pr~scntation du Professeur Steger est
don~c re'f. 141 et 161.

La ri~union a ett organis~c en cinq seances, selon le programme suivant:

- seance I deux communications servant d'introduction au sujet

- seance 2 qilatre communications Sur la generation die grilles alg~briques

- seance 3 quatre communications sur les maillaies Structures par blocs

- seance 4 six communications Sur les maillages multiblocs et/ou adaptatif's

- seance S~ cinq communications Sur les maillages non structures

La dernicrc communication, presente~e par Ie Panel sur la propagation des ondes eilcetromagnetiques. a drmontre Ia
relation cmre- Ic calcul die [a propagation decs ondes lectrornapniqucs ct le (TI). en particulier pour la acn~ration dies,

line c% aluarion detaillee des texles prtesentes a et. realisee par 1expert en Ia natiere. ).Sicger, et ses conclusions ont etc
puLbliCes 1,o.us ]a fornic du document AGARD-AR-268 131-
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RECENT DEVELOPMENTS IN GRID GENERATION

by

J.Hauser and A.Vinckier
Acrothcrmodynamics Section

ESA - European Space Research and Technology Center
P.O. Box 299. 2200 AG Noord%%:jk

The Netherlands

ABSTRACT

This paper gives an overview on recent developments in grid generation with emphasis on the results presented
in the proceedings of the Second International Conference in Numerical Grid Generation in Computational
Fluid Mechanics '88. Grid generation is essential for the solution of all kinds of fluid physics problems. It also
reports briefly about the grid generation activities pursued by the authors, mainly to be used for Hermes. It is
particularly important in cases where very different length scales are present, as, for example, in the case of
turbulence, which can be considered as the pacing item in present day fluid physics. The main issue of this
work deals with multi-block grids in 3-D, but unstructured grids are also briefly mentioned. The important
topics in multi-block grid generation are outlined and various approaches to their solution are discussed. The
following main building blocks have been identified: Topology of the grid, that is how neighboring blocks are
identified and what their relative orientation is to each other; patched (nonoverlapping grid that has grid line
continuity only) or matched grids (grids with slope continuity, i.e. continuous tangent vector); block
decomposition, which has to be automated if hundreds or thousands of blocks are being used; surface grid
generation and analytical description of smooth surfaces to avoid the generation of shocks or expansion fans;
grid point clustering (static grids): grid adaptation (dynamic grids) according to specified gradients or function
values performed either by redistribution or by local enrichment; postprocessing of grids to visualize and to
achieve a specified grid quality at certain point; or along certain lines or planes (interactive process).

1. Introduction

Before a numerical solution can be computed, a proper grid must be generated around the vehicle or body
of interest. Depending on the physical phenomena during the flight regime, the grid point distribution can vary
substantially. Numerical grid generation therefore demands a great flexibility in distributing grid points within
the solution domain. The goal is to place grid points at locations where the physics is changing to achieve
highest accuracy while only a minimal set of grid points is used. This can be done by using structured grids (a
curvilinear CS (Coordinate System) is defined) or by using an unstructured grid where the neighboring grid
points are identified by a table of nearest neighbors. The most widely used solution technique is the same for
both type of grids -as far as compressible flow is concemed- namely the FV (Finite Volume) technique, which
ensures the conservation of the physical quantities and allows for weak solutions.

In the following a brief discussion of the merits and demerits of structured and unstructured grids is given, and
recommendations are presented when to use either type of grid. However, this is based on a personal view and
there may be dittereit opinions.

2. Structurcd vcrsus U,,structured Grids

Regarding high speed flow past 3-D objects many flow situations can be encountered where the flow in the
vicinity of the body is aligned with the surface. i.e. there is a prevailing flow direction. This is especially the
c..se in hypersonic flow. The use of a SG (Structured Giid. a!-,o cAlled body fitted or boundary fitted grid.
allows the alignment of the finite FVs in that direction, rz'ulting ;n locally ID flow H1'nce. nume'il diffuion
is reduced, i.e. better accuracy is achieved when compared to an UG (Unstructured Grid). Second, SGs can be
made orthogonal at boundaries facilitating the implementation of BCs (Boundary Condition) and asu
increasing the numerical accuracy at boundaries. Furthermore, orthogonality increases the accuracy when
algebraic turbulence models are employed. In the solution of the N-S (Navier-Stokes) equations, the BL
(Boundary Layer) must be resolved. This demands that the grid is closely wrapped around the body to describe
the physics of the BL (some 32 layers are used in general for SGs or UGs). Here some type of SG is
indispensable. In addition, to describe the surface of the body a structured approach is necessary. The
resolution of the BL leads to large anisotropies in the length scales in the directions along and off the body.
Since the time-step size in an explicit scheme is governed by the smallest length scale or, in the case of
chemical reacting flow, by the magnitude of the chemical production terms, there will be extremely small time
steps necesrary. This behavior is not demanded by accuracy but to retain the stability of the scheme. Thus,
implicit schemes will be of advantage. In order to invert the implicit operator, factorization is generally used,
resulting in two factors if LU decomposition (that is factoring in the directon of the plus and minus
eigenvalues) is employed or in three factors if the coordinate directions are used. For the unstructured approach
there is no direct way to perform this type of factorization. Moreover, the use of the so called thin layer
approach, that is retaining the viscous terms only in the direction off the body, cannot be used. A reduction of
30% in computer time has been reported. Since there are no coordinate lines in the UG, this simplification is
not possible. Moreover, the flow solver based on the UG is substantially slower than for the SG. This is due to
the more complicated data structure needed for UGs. Factors of 3 [381 and by some authors of up to 10 139
have bee' given in the literature.

Although it might be thought that CPU time is no longer a critical item with the next generation of computers.
this will not be true if turbulent flows and transition phenomena are to be modeled. Suppose there is a Cray4
that is a 100 times more powerful than the present Cray2 and suppose we need a factor of three more in CPU
time and memory based on 10 Million grid points. This would amount to additional 299 present day Cray2s.
and using 100 words per grtdpoint would demand additional 16 Gbytes of memory, Since transition and



turbulence are the driving force for future applications in aerospace, any additional increase in computing
speed and memory has to be used to improve these solution of the physical phenomena.

An important point for the accuracy of the solution is the capability of grid point clustering and solution
adaptation. In geneial. SGs provide sophisticated means both for clustering and adaptation using redistribution
or local enrichment techniques. A comparison of these two approaches is given in [141 where local enrichment
gives somewhat better results. However, it is much more costly to use. The highest degree of freedom of course
is obtained in UGs. We feel, however, that mesh redistribution is totally adequate for the major part of the flow
,ituations encountered in external flows, especially in aerodynamics. If a very complex wave pattern due to

special physical phenomena evolves, for example, generating dozens of shock waves, then the UG has
advantages 1301. In addition, the coupling of SGs with UGs is possible as has been shown in [17]. Such a grid is
called a hybrid grid.

Attention should also be given to the use of parallel computers. Massively parallel systems with several
hundred of processors will soon become available. Here block-structured grids can be very important, since, in
principal, each processor can iterate the solution for each block and then update the boundaries of the
neighboring blocks by passing a message. Overlapping block-structured grids are very well suited for this type
of computer. However, in 3-D, overlaps should be restricted to one face only to avoid the storage of grid points
that are not active, (see Fig.3). It is important to note that the solution procedure for storage coupled or private
memory machines should allow the application to general geometries, i.e. in the case of multi-block (see
Chap.3) the CP does not have a regular geometry but can be quite fragmented. This poses difficulties f ;r
machines using the wave concept. First results for general 2-[) geometries are presented in [41.

3 Mit In Bliwk itc s s Stm ,hIc Rh, k

If the topology of the SD and the domain in the CP are not of the same order, certain grid line
configurations cannot be realized (see lower part of Fig. I b). Thus a n-fold connected region in the PP should be
mapped onto a n-fold connected region in the CP. This is achieved by using the so called multi-block approach
(Fig 2). A grid can be comprised by matching blocks (see Fig.2) where slope continuity is provided, i.e.
neighboring blocks overlap by one row or one column. Looking at such grids, block-boundaries are not visible,
which is the most suitable case for the flow solver, sir.,c, of course, the flow solution must tot depend on the
blocking of the SD. This can he avoided by the following construction process: first a fairly coarse grid
utilizing the overlapping approach is constructed, and, in a second step, the grid is doubled for selected blocks
only. without changing the positions of the grid points on the coarse mesh. This approach naturally leads to a
local refinement that easily ensures flux conservation and also allows the direct application of the multigrid-
technique A simpler requirement is to demand grid line continuity only and the next step is to also give up that
feature, which results in more freedom in grid generation, but demands substantial efforts ir, thb- flow solver to
guarantee the conservation of fluxes across block boundaries. The best approach, of course, is depending on the
physics that has to be modeled.

DOUBLY CONNECTED SIMPLY CONNECTED

BRANCH . . -

CUT

DOUBLY CONNECTED SIMPLY CONNECTED

BRANCH 7here is no

,_._.j t our ppifl thit
generates ths
Sr idl ine conf-
guration i

a b
Fig . The upper part of (a) shows an C-type grid which, by a branch cut, can be mapped onto a single
rectangle in the CP. There are situations where an H-type grid (lower part of (a)) is advantageous, e.g. flow
past a cylinder. This grid line configuration cannot be obtained by a branch cut. Using cuts always maps a n-
fold connected SD onto a simply connected domain in the CP. Here the idea of multi-block grids is essential in
generating a mapping retaining the connectivity of the original SD. Hence, multiple cuts and multi-blocks are
not equivalent.



Fig 2 (;rid vith s ope o'tin*tt *ty Eight blocks 'ire necessarv if the same number of grid points is required at
nteig/horngttt edges The multi block idea therefore is to map the SD onto a set of connected rectangles in 2-D or
hows in .- [) The same alppro)ach can be used fr curved surfaces in 3-D. which can be thought to be patched
or math ed h% a set of charts forming an atlas where ea( h chart is a manifold, i.e. is locally equivalent to a
plane surta('v

4 Key Issues of.?-D Mulrtiblo(k Gr ids

;ii general. geometry data is given by some type of CAD system. This data is to be processed to generate
the required surface grid the surface grid serves as a type of boundary for the volume grid to be constructed.
and thus stronglN influences the overall grid quality. The following gives an overview of the key issues in 3-D
multi-block grids. In Table I the complete process for the design of a vehicle of complex geometry is outlined,
starting from the lower left corer For example, at present. a large amount of time has to be spent to process

the data from e.g, _'ATIA or Euclid to construct a computational grid for the Hennes Space Plane. In the
follo" ing we briefly present the key issucs of 3-D multi-block grid generation. Of course, not all the topics
mentioned below can be treated in depth in this paper. One of the major problems encountered so far is the
large amount of human interaction to first produce a surface grid and the subsequent generation of the multi-
block grid Moreover. the blocking of the grid is not straightforward. Here, some type of knowledge based
system could be useful I II or the technique described in 1241 could be employed, which can be considered to be

a ma)or step forward in automating the decomposition of the SD

(11 Bod Geometry Definition and Geometric Modeling

-Contructiiin of Coons patches for analytical surface description, or similar technique

(;raphics editor

(ii) Surface (rid (;enerattoo

2-1) grid topology

2-[) multi block grids on curved surfaces

- direct projection method

generalized 2-) elliptic grid equations

- database for 2-4) surface patches

- analytical definition (e g body of revolution)

(iti) Data Structures for 2-1) and -I-D Grid Topology (Block Connection)

- interconnection field

pointer arrays

- Gray Code

liv) Gid Generation Techniques

- algebraic

- PDE (Elliptic)

- iterative ISOR etc

- multigrid

- hyperbolic (outer bountdary not specihel

(yv Grid Point Clustering and Adaptive Grids

- orthogonality

- distance control

- solution adaptation



-local enrichment

(vi) Interactive Grid Generation

(vii) Grid Visualization

(%-iil Grid Generation on Parallel Computers

-Storage coupled computers ( 16 Processors)

-Massively parallel systems (MIMD. 16 Processor I

oIx) Expert Systemns
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II 111 pf



Fig ? The upper part shows the cross sections for the Hermes Space Plane. The original tape contains spline
coefficients from CATIA. This information then is processed to obtain the cross sectional curves. Grid points
can be distributed by a user specified weight function, e.g. curvature. It is essential to construct a s,ooth
surface to prevent the generation of shocks or expansion fans. Commercial packages, e.g. PATRAN, can
therefore not he used to generate a proper surface, The lower part shows the block structure as described in
122/ A software package was written that generates a sequence of cross sections from CATIA data generating
the desired grid point distribution on each cross section for the Hermes space plane.

5 Suiface Grid Generation

EqI ) gives the general description of a parametric surface needed to describe the surface of a vehicle

(body.

C = X'(u 1.u2) i=1,2,3 (1

In component form using (u.v) as independent variable this can be written as

x =k(u.v) y =v(u'v) I z =(u,v). (2)

let the surface of the body be the plane = constant, two mappings have to be considered for the surface grid:
From the physical space to parameter space and from there to the Computational Space with uniform grid
,spacings A = Ar1 = A= I. The surface grid can then be generated in various ways. For example, if Eqs.(2)
are known in form of a set of bicubic splines (Hermite, Bezier, B-Splines). the general form of 3-D elliptic grid
generation equations can be used taking into account the constraints represented by Eqs.(2)- We start from
E-Als ) (see Chapter 7 for details), which are the 3-D grid generation equations

g C ' X,, = p dh'
- q =gn

"
P -1,i"i i=l2,3 (2)

I Ising (u I, u 2) instead of (u,v), inserting the parametric representation in Eqs.(2) in Eqs.( 1). one obtains:

iniploving the chain rule for first derivatives

+ rj , t=1.2,3

r~=,~ + %riv i=1,2,3

isecond derivatives are derived in a similar way), results in the following forn of the final grid generation
eqillat ions

utlu, +( ~u -2Piin +yiUn +Y2dJ Qu1 +dj2 re "-Y le,.xe, 2 =0 (4)

S=r'e,,, - 2 +, + '

:e,.e,4;':=e,, e, :=C, e,

A ,imrlar equation holds for v Vectors e,, v, denote tangent vectors. It should be noted that Eqs.(4) ensure that
points will moive on the surface and that grid point distribution control functions P,QR can be determined for
example from the boundary point distribution or By additional requirements that can be imposed on them (see
below)

In order to improve the accuracy of the solution neat the body surface, additional constraints are imposed on
the grid on the surface:

It is however iIan(iatorv to hive control over lic prid tjill t nh o ii th I ... 1 11 , e. theletole the following
constraints are imposed Mhele the bi h1 srrltfake I" iS issiinid to ht' the pliii' , 0
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(i) Orthogonality [21:
e;.e =0 -e;.e n =0: Plane : =0
e:, := o)x/ON ; X = (X,y,Z)

(ii) Cell size control:
e .er = (h (,))2 = Height of a cell, i.e. distance of next layer of grid points from body surface.

(iii) Vanishing of principal curvature of c-directed lines, smoothness property.
e4. et =0 ; e,.e ; =0

(iv) Iterative calculation of control functions 161, for specification of angles of intersection with vertical
gridlines and body surface, here for angle cc (Q determines angle J3)

P" =P" +AP AP =-arctanl u'q - a

where ar,.q is a user specified angle and cc denotes the current angle. (ii) and (iii) are special cases of
(iv).

6 Data Structuresfor 2-D and 3-D Grid Topology

In a multi-block grid each block has its own local coordinate system. In the matching of neighboring
blocks there are the following possibilities for 2-D and 3-D SDs, see Figs.3 and 4, respectively.

(i) 2-D: Each side of the current block can be matched with a side of a neighboring block in two ways. Hence,
there are 4 x 2 possibilities of matching a side of a block with a specific side of a neighboring block.

2 f 2

3 0 Q
4 4

(a)2 4.-i-i-- -
3 Q 1

,4422

(b)

In Fig (4) side I of hlock I is iattIhed to side 3 of lo k 2 in the same direction, i.e. points wvith the same r
vlahs are ,tatched It (h) the nmat him' (irection is reversed. Thisf 'eedo i is obso/itte/r nc'essarv to conlstruct
fleilhe grid.

(ii) 3-D Each face if the current block can e matched ' ith the -ace ot a nl igI cing block in 4 ways. Hence,

there are 6 x 4 possibilities of matching a face of a block with the specific face of a neighboring block.

3a)

(a)
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f

(b)

In Fig (Sa) face 1 of block I is matched to face 3 of block 2 in the same direction. (b) shows the matching
where block 2 was rotated about the 4-axis by an angle of r/2.

The appropriate data structure describing neighboring blocks along with the matching sides has to be designed;
eg. [401. Here, a modem high level language like C or C++ is advantageous, since it allows the definition of
complex data structures. A short piece of code, taken from [41], shows how the orientation of neighboring
blocks with respect to each other is determined. Values rotx, roty, rot-z varying from 0 to 3, determine
rotation of a face from 0 to 3/27t. The routine returns values for hi, nj, nk that describe the orientation of the
local CS of the neighboring block with respect to the neighboring block. In C, variables provided with an
asterisk, denote so called pointers, i.e. indirect addressing is used.

void orient (rotx, roty, rotz, ni, nj, nk)
unsigned rotx, roty, rotz;
unsigned *ni, *nj, *nk;

void mul();
static int MZ[3] (31=(0,-1,0,1,0,0,0,0,1I,MY[3] 131=(0,0,1,0,1,0,-l,0,0l,

MX13] 131-1,0,0,0,0,-1,0,1,0),v[31=(i,2,3;
int i,j,k;
for (i-0;i<rot_x;i++)
mul (MX, v);

for (j=0;j<roty;j++)
mul (MY, v);

for (k-0;k<rot_z;k++)
mul (MZ, v);

*ni-v[0];*nj=v[1];*nk=v[2];

void mul(A,v)
int A[]1,v[];

int C131;
int i,j;
for (i=0;i'3; i++)

(C[i]=0;
for (j=O;j<3;j++)

Cli]+=A[iJ [j*v[jJ;)
for (i=0; i<3; i+I)

v~i]=C[i];

Fig 6 Illustration of determination of orientation of local CS of neighboring block, using the C-language.
Among others advantages, pointers (denoted by *) allowing indirect addressing can be used.

In Fig.7 we see the block structure for a 2-D multi-block grid for an airfoil where an H- and C- type grid are
merged. As can be seen, FVs with more than four vertices can be generated, which can easily be handled by the
flow solver. The blocking here is not so straightforward since common edges must have the same number of
grid points overlapping by one row or one column.

Fig 7, The block structure is shown for an airfoil generating a grid which is both of H- and C- type
structure .01

I
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Fig 8: Block structure for the 3-D grid, the fuselage-wing intersection shown in the first part of Fig.8.[40

4

Fig 9: The first two pictures show the 3-D grid for a fuselage-wing configuration. The other two figures show a
grid around a generic body, having some similarity with the space shuttle. The figure on the lower right
depicts a surface grid for the Hermes space plane using about 10000 points. The purpose of this figure is to
demonstrate the importance of the combination of sophisticated visualization software together with advanced
supergraphics workstations, that are indispensable for work in aerodynamics.



7. The Grid Generation Procedure

In general, generating the grid point positions for 2-D and 3-D grids has to be done by numerical
techniques. This can be done by algebraic grid generation [12] (transfinite interpolation) or by solving PDEs
which can either be of hyperbolic [19] or elliptic 181 type. Using PDEs demands first the establishment of the
system of equations to be solved (one equation for each coordinate direction). Hyperbolic equations do not
need an outer boundary, rather the grid can be started from the surface of the body and then be advanced into
the SD. The procedure is stopped if the grid is far enough from the vehicle, that is all the important physics is
contained in the gridded region. Of course, this procedure only works if the outer boundary is not prescribed. In
such a way an orthogonal grid can be constructed, along with the specification of the grid cell size. Transfinite
interpolation, which is multi-directional interpolation, has its name from the fact that it matches the function on
the entire boundary, i.e. ai a nondenumerable number of points. Interpolation is normally very fast in
generating a grid, which is however, not necessarily smooth. If splines are to be used as blending functions, a
grid with continuous second derivatives is obtained, that is more costly to generate. The multi-surface
interpolation is a unidirectional interpolational procedure where interpolation from a vector field along with
vector normalization at each interpolation point is used in order to match boundaries. Both techniques,
algebraic and hyperbolic grid generation normally need some smoothing, which is done using an elliptic
technique. The use of elliptic PDEs gives rise to the solution of a boundary value problem, i.e. the boundaries
along with appropriate BC's have to be prescribed. Therefore we will outline in some detail the essentials of
elliptic grid generation. Recalling an example from electrostatics, namely the picture produced by electric field
lines and equipotential lines formed by a set of two charged capacitors, one obtains a smooth mesh where grid
lines are concentrated automatically in regions of higher curvature. Since the physics is described by the
Laplace equation it is natural to use this equation together with a nonzero RHS, to provide additional control
over the grid line distribution.

In the Physical Plane (PP) the elliptic grid generation has the form

+, , +4 ,zz = P
11- + ryy + i. = Q (5)
C, + ,+ . =R

Using a more concise notation
, =4; =I1 ;g = ;;x

I 
=x ;2 3=y ;x

3
=z

one can write

2 g"p(p , 2 3 )=p i = 1,2,3 . (6)

where g " denote the contravariant components of the metric tensor g (see below). All equations, that is the grid
generation and the physical equations are solved in the CP and therefore have to be transformed along with
their BCs. The transformation rule for the Laplacian applied to a scalar function 4(\,) where x = xi + yj + zk is
the position vector, is of the form

4= t'"4.:. + /V (7)
with

JDet (ij nuior oj g
Det g

Let 4):=x t and note that V2 x I -0. Hence

g 4'xtjXe + V2Z ).r/ = 0 (8)

where Einstein's surmnation convention is used; double indices are summed over. Substitutions of Eq.(6) into
Eq.(8) results in

IVfx1 ,1 + Pk4x, = 0 ; 1=1,2,3 (9)

Rewriting the latter for computational efficiency gives

a1 1 ~ +~x~ +v~x +tatx~n+a~x ~ I;)x~ +j2t[Pxk+Qx,' +RxJ -0 ;1=1,2,3 (10)a l.A, +a22xTM ..3x + a12x ,najx 2X

as =Am, Am1

Am, = (-I)m+. rmi minor of a

J=Derl -x

The source functions, Pn, are used to influence the distribution of the coordinate lines or surfaces in the
physical domain. This system of equations is discretized and solved numerically. Very often this is done by
iteration. If multigrid techniques are used, a substantial speed up can be obtained. In that case, elliptic grid
generation will be competitive with the algebraic technique.



S. Mesh Redistribution and Local Enrichment

The RHS of the grid generation equations (see Chap.7) contains the so called control functions, PQ, and R.
These functions can be used to redistribute the mesh point configuration according to the grid point distribution
specified on the boundaries, which is used to calculate the values of the control functions and then interpolates
them into the SD. Hence, the grid in the interior shows the same grid point distribution as on the boundary.
Fig. 10 shows the effect of the control function on the grid point locations and Fig. II shows a redistributed
mesh for a cross section of the Space Shuttle.

P.O o.0 P.o Q.O

Fig 10: This picture. taken from [61, shows the impact of control functions on the grid point distribution.
Control function values larger than 0 move the grid lines to higher coordinate values. Movement in the
opposite direction is achievedfor negative controlfunction values.

Fig 11 .Redistributed mesh fir a space shuttle cross section via control functions

In Fig. 12 the effect of control functions PQ on the angles 3 and ci is depicted for the plane , = const. Function
R controls the distance of the next layer of points. In order to prevent the influence of these control functions
into the SD, they are multiplied with an exponentially decreasing function. In order to reduce the number of
iterations, a good initial guess for P,QR should be supplied 161.

"II / I

Fig 12: Control functions as used in [6/ for the control of angle for grid lines in the direction off the body. i.e.
angles a and J3 can be specified. The third control function controls the distance of the next layer of grid points
from the surface. Control functions are calculated iteratively. This approach allows a good control of grid
point distribution.



Figs 13 and 14 show a comparison of grid redistribution and local enrichment. The grid is redistributed
according to the change in the physical solution, e.g. pressure or density using some type of either finite
approximation of the gradient or the second derivative. It is important to ensure that grid lines cannot cross
over. Details can be found in [14].

(a) Redistributed grid (b) Enbedded grid

1 60

M SC

00 040 00

(a) Rledistributed grid ( ,) E nribn ldded grid

S rface Mach number distributions for the RAE-2 22 arfoil at 1. 0 75

Fig 13. Grid point redistribution versus local enrichment [8]. Although enrichment results in a somewhat
sharper shock, the data structure is more complicated if multi-block grids are used. However, mesh
redistribution results in a simpler code. An alternative is to use enrichment for complete blocks only so flux
conservation across neighboring faces is easily achieved.

A Co-partson o Two Adaptive Grid 'eeh...qraes

0

(a) M a th ni rnd br contourq on initial, non adap ed grid, A M 0 10

( I a ) Rt .da t r i bl t g r i d ( d ) F n h, d d c d g r i d

(r) Mach nu ber rontanrs ,an rtAaista ht ed grid, AMAt -- 0 10 (e) Mach number contourm on reaabeddd grid, AM = 0 10

Adapted ohhltions (or .,tt = 2 W0 How in a duct with 10 wedges

Fig 14: Grid point redistribution versus local enrichment for SGs taken from 181. Shock capturing features of
both techniques are very good where local enrichment gives somewhat better results.

9. Unstruciured Grids

In the past, UGs have been used mainly in structural mechanics, in connection with the finite element
method (FEM). Recently UGs have been applied to fluid dynamics, and some impressive results have been
obtained, see, e.g., Fig. 15. This is not in contradiction to our discussion in Sec.2.
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Fig 15 Detail of surface ,Ai,,;F:alion from a tctrahed;-af mesh arouad the F15 aircraft, takcn fon 129]

The major concern is that UGs using the FEM will demand much more hardware resources and higher
computation times. Most UGs are generated using a Delaunay triangulation that will produce the most
equiangular triangles possible. For viscous flow this is not well suited since a directionally refined mesh is
needed. The generation of this type of mesh is described in [28]. However, UG generation is at least an order of
magnitude slower compared to the block-structured technique.

10. Grid Generation on Parallel Computers

In the preface of the proceedings of the First Grid Generation Conference [43]. the possible impact of
parallel computers was briefly discussed, and the importance of parallel algorithms for CFD was stressed. In a
recent survey paper by Hoist [42], the number of floating point operations for the solution of the 3-D N-S
equations exceeds 1011 for the hypersonic case with a grid of some) I 6 poill This estimate is valid for the
stationary case only aud does not include the solution of equations needed to account for chemical reactions
Thus. for realistic hypersonic equations where up to some 107 grid points may be necessary, and, including
transition and turbulence phenomena as well as thermo- chemical nonequilibrium. 101 5 or even 1016 floating
point operations have to be performed. Clearly, this tremendous number of floating point operations cannot be
handled by a single processor in a time and cost effective manner. The solution therefore lies in the use of a
computer architecture employing a set of processors working in parallel.

Using the overlapping multi-block approach, it is naturally to ascribe one or more blocks to each processor on
which to solve the Poisson equation (for grid generation) or the physical equations. This process is called DC
(Domain Decomposition). Grid generation is a good example for DC, since exactly the same structure is used
for the flow solver, which is computationally much more expensive. However, it is important to parallelize the
code in such a way that there are no dependencies on the shape of the SD, i.e. in some papers the SD was
assumed to be of rectangular shape, which was then subdivided. For the general case, the SD is a set of
connected rectangles or boxes and its shape must not influence the speedup of the parallel algorithm [4].

We concentrate here on massively parallel systems, e.g. Intel's hypercube or the Suprenum machine [371,
which are private memory (several MB), message passing systems where each processor has a power of several
MFLOPs.

It is often stated that scientific programs have several percent of serial computational work, s, that limits the
spczdup, a, of parallel machines to an asymptotic value of I/s according to Amdahl's law where s+p=l
(normalized) and n is the number of processors:

a= s+p 0 1)s+p/n s+p/n (11)

This law is based on the question: Given the computation time on the serial computer how long does it take on
the parallel system? However, the question can also be posed in another way: Let s', p' be the serial and
parallel time spent on the parallel system then s' +p'n is the time spent on a uniprocessor system. This gives an
alternative to Amdahl's law and results in the speedup which is more relevant in practice:

a = ! =n +(I -n)s' (12)
s' +p'

It should be noted that DC does not demand the parallelization of the solution algorithm but is based on the
partitioning of the SD; i.e. the same algoritl-n on different data is executed. With that respect, the serial pAn. s
or s' can be set to 0 for DC and both formulas give the same result. The important factor is the ratio rc7r (see
below), which is a measure for the communication overhead. In general, if the selection algorithm is
parallelized. Amdahl's law gives a severe limitation of the speedup, since for n -+- a is equal I/s. If, for
example, s is two percent and n is 1000, the highest possible speedup from Amdahl's law is 50. However, this
law does not account for the fact that s and p can be functions of n. As described below the number of
processors, the processor speed and memory are not independent variables, which simply means, if we connect
more and faster processors, a larger memory is needed, leading to a larger problem size, and thus reducing the
serial part. Therefor speedup increases. If s' equals two percent and n = 1024, the scaled sized law will give a



speedup of 980, which actually has been achieved in practice. However, one has to keep in mind that s and s'
have different values. If s' denoted the serial part on a parallel processor in floating point operations, it is not
correct to set s =s'n since the solution algorithms on the uniprocessor and parallel system are different in
general.

For practical applications the type of parallel systems should be selected by the problem that has to be solved.
For example, for routine applications to compute the flow around a spacecraft on a grid of 107 grid points,
needing some 1014 floating point operations, computation time should be some 15 minutes. Systems of 1000
processors can be handled, so each processor has to do some 1011 computations, and therefore a power of 100
MFlops per processor is needed. Assuming that some 100 words, 8 bytes/word, are needed per grid point, the
total memory anounts to 8 GB. that means 8 .B of private mtenti,, f,. ,':, h-,cessor, resulting in 22 grid
points in each coordinate direction. The total amount of plocessing time [et h1,t k consists of computation and
communication time:

t, =N'*4000*t, +6N 2 * 10* 8 *tT (13)

where we assumed that 4000 floating point operations per grid point are needed, and 10 variables of 8 byte
length Per boundary point have to be communicated. Variables t,.7r are the time per floating point operation
and the transfer time per byte, respectively. For a crude estimate, we omit the set up time for a message. Using
a bus speed of 250 MB/s (quite high), we find for the ratio of computation time and communication time.

N3 *4000* 250r2T. N.1""10 20N t i4)
6N' * 10 *8 * 100

That is for N = 22, communication time per block is less than 0.25% of the computation time. In that respect,
inmplicit schemes should be favGured, because the amount of computation per time step is much larger than for
an explicit one.

In order to achieve the high computational power per node a MIMD/S1MD (Multiple Instruction Multiple Data;
Simple Instruction Multiple Data) architecture should be chosen; that means, the system is of massively
parallel architecture, e.g. Suprenum. and each processor itself is equipped with a pipelined floating point
processor. It should be noted that even if r(Tc.l this is not sufficient, since, if the computation speed of the
single processor is small. e.g. 0.1 MFlops, this will lead to a large speedup which is, of course, somewhat
misleading because the high value for rT only results from the low processor performance. In conclusion, it is
believed that the concept of MIMD/SIMD is the most promising for computationally intensive applications in
fluid physics and DC will be a powerful concept to tackle problems demanding excessive number crunching.

SI. Computer Issues in Grid Generation

Fortran 77 is the language most widely used in science and engineering. This language has quite a number
of deficiences as will become clear obvious when compared with C. It should be kept in mind that Fortran (or
Ratfor) is a subset of C, and that using this part of C will only take a couple of days for an experienced F77
programmer. If the more advanced parts of C are going to be used, a longer training period is needed, resulting
in higher productivity and a safer code. In the following a brief comparison between F77 and C is given:

C contains all F77 possibilities

C has advantages with respect to automatic debugging (function prototyping)

C allows for dynamic storage allocation

C allows for the definition of complex data structures

C programs are much shorter and well structured

C has an interface to many graphics packages

C allows recursive programming

C is portable

F77 programs can be called from C

The recommendation is: If there are no historical constraints, the C language should be preferred, in particular
for 3-D multi-block grids where the data structure is more complicated and especially for UGs, which have a
much more complex data structure. With the growing popularity of the UNIX operating system, a C compiler
will be available from a simple PC to the largest supercomputer, even DEC and IBM have now joined in the
UNIX market.

The second important part is visualtzation of 3-I) giut, and alo of the 1,ml thlid properties. Very powerful
graphics superworkstations are now available, e.g. Silicon Graphics, Ardent, Stellar, Alliant etc. which provide
very sophisticated graphics hardware that frees the user from the burden of low level graphics programming,
for example, hidden surface detection by the use of bitplanes, which results in a speedup of several orders of
magnitude compared with dumb workstations capable of drawing lines only, while computations are performed
on a mainframe.

Adding interactiveness to the grid generation process, in combination with the new type of workstations most
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likely will be the way to reduce the grid preparation time for complex configurations from months to days.
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ABSTRACT

Current techniques for the generation of composite-block structured grids for general 31) configurations are
discussed. The various aspects of grid generation involved are noted, and their incorporation in general codes is
cited. Current techniques for adaptive grids for general configurations are also discussed.

1. INTRODUCTION

Grid generation has pogressed to ;he stage now of large general code development. The basic mathematical
techniques involved have, to a large degree, been settled on and developed to an adequate lesel for common use.
This is not to say that no further theoretical developments are needed, and advances continue to be reported in the
literature, but major effort is now focusing on implementation in comprehensive codes. The principal concern is.
in fact. now the development of automited procedures and codes with effective user interfaces

The major emphasis now is on the treatment of very complex 3D configurations and on dynamically-adaptive
grids coupled with solution codes. In regard to the former, although general codes are nos available, it can s.till
take a man-month to generate a grid for a complex new configuration. Although more computer time is t.picall\
required for a flow (or other PDE) solution, more man-time is generally spent on the grid This is particularl] a
problem as flow (PDE) codes are becoming available that can be run effectixely by design engineers. while the
effective use of the grid codes still requires considerable expertise and experience Adaptive grid techniques are
not as wkell settled, and a number of approaches are still being considered Some trends are emerging, hosse\er.
and the utility of grid adaptation is clear

ihis paper delineates the essential grid generation techniques that are incorporated in gene.al codes. takes
note of some such codes, and comments on some of the more promising adaptike approatches. This is not.
howcer, a current turvc\ of grid generation, and no effort is made to cover all the literature on the subject or to
cite all korks in thc area In particular. no consciou attention is gisen to ne% generation technique,, a' 'ch

2. GRID TYPES

The three basic grid approaches are a rectangular or Cartesian-like grid, a structured cur ilinear bod\ -con-
forming grid. and an unstructured triangularized grid. Each grid type has advantages and disadvantagces. The
rectangular grid is well-ordered, trivial to generate, readily ,Otows accurate interior difference approximations,
and the representation of a difference approximation requires the minimum work per step. IHowse\er, boundary
representation requires special logic, is generally of poor accuracy, and the grid does not cluster to efficientl
resolve viscous boundary layers on curved boundaries. The curvilinear body-conforming grid is also \ell-or-
dered, allows higher-order difference approximations, permits simple and accurate boundar difference ap-
proximations, and can he clustered into gradient regions. It is especially well suited for iscous boundary la. er
approximation. However, the governing equations are more complex to difference on a curvilinear arid (al-
though body-conforming grids often permit use of additional approximations), aid grid generation. %shile not
difficult for simple bodies, is no longer trivial. The unstructured triangularized mesh has good grid concentration
(i.e., triangles can be tead',y deleted in smooth gradient regions) and the shape of the boundary curve is readily
conformed to. However, such a mesh is poorly ordered and is therefore less amenable to the use of certain
algorithms (e.g. ADI) and vectorized computers. The unstructured mesh requires less ingenuity to devise (though
not necessarily to code) for complicated regions than does the structured mesh, but requires considerably more
computer time and storage, as well as a much more involved data handling procedure. Moreover, unstructured
meshes have not been used to a significant degree for resolving high Reynolds number viscous boundary layers of
practical interest. Combinations of structured and unstructured meshes can also be used, with structured meshes
near the boundaries connected by unstructured meshes.

For a simple body shape, the use of a single body-conforming curvilinear mesh leads to the most efficient
solution procedure. As a result most current aerodynamics solution codes employ a body-conforming structured,
curvilinear grid. Considerable effort is now underway to extend these procedures for complex three-dimensional
configurations, generally by using composite grid techniques.

3. COMPOSITE GRIDS

Terminolog

The use of composite grids has been the key to the treatment of general 3D configurations with structured
grids. I ere in general. "composite" refers to the fact that the physical region is divided into subregions (domain
decomposition), within each of which a structured grid is generated. These sub-grids may be patched together at
common interfaces, may be overlaid, or may be connected by an unstructured grid. Considerable confusion has
arisen in regard to terminology for composite grids, making it difficult to immediately classify papers on the
subject.



Composite grids in which the sub-grids share common interfaces are referred to as "block", "patched",
'embedded", or "zonal" grids in the literature. The use of the first two of these terms is fairly consistent with this
type of grid ("patched" comes from the common interfaces. "block" from the logically-rectangular structure),
but the last two are sometimes applied to overlaid grids. Overlaid (overset) grids are called "chimera" grids after
the composite monster of Greek mythology, but may also be said to be "overlapped". Unfortunately, the com-
mon interface grids can also be said to overlap since they typically use surrounding layers of points to achieve
continuity. Embedded grids can be most anything, and the term is probably best avoided. The use of "zonal"
comes mostly from CFD applications where the suggestion of applying different solution equation sets in differ-
ent flow regions is made. Perhaps "block" or "patched" would be best for the common interface grids, "chi-
mera" for the overlaid (avoiding "overlapped") grids, and "hybrid" for the structured-unstructured combina-
tions.

Eorms

With this terminology adopted, the block (or patched) grids may be completely continuous at the interfaces,
have slope or line continuity, or be discontinuous (sharing a common interface but not common points thereon).
("Block" seems to cover all of these possibilities, but "patched" is being stretched a bit in the latter case.)
Complete continuity is achieved through a surrounding layer of ("image", "phantom") points at which values are
kept equal to those -t corresponding "object" points inside an adjacent block. This requires a data indexing
procedure to link the blocks across the interfaces. With complete continuity, the interface is not fixed (not even in
shape), but is determined in the course of the solution. This type of interface necessitates an elliptic generation
s\stem. Slope continuity requires that the grid generation procedure incorporate some control over the intersec-
tion angle at boundaries (usually, but not necessarily, orthogonality), as can be done through Hermite interpola-
tion in algebraic generation systems or through iterative adjustment of the control functions in elliptic systems. In
this case the points on the interface are fixed, and the sub-grids are generated independently except for the use of
the common interface points and a common (presumably orthogonal) angle of intersection with the interface. The
CFD coding construction is greatly simplified with either complete or slope continuity, since no algorithm modifi-
ations are necessary at the interfaces.

The chimera (overlaid) grids are composed of completely independent component grids which may even
overlap other component boundary elements, creating "holes" in the component grid. This requires flagging
procedures to locate grid points that lie out of the field of computation, but such holes can be handled even in
tridiagonal solvers by placing ones at the corresponding positions on the matrix diagonal and all zeros off the
diagonal. These o\erlaid grids also require interpolation to transfer data between grids, and that subject is the
principal focus of effort in regard to the use of this type of composite grid.

lhc h.sbrid structured-unstructured grids avoid this interpolation by replacing the overlaid region with an
unstructured grid connecting logically-rectangular structured component grids. This can require modification of
,olution codes, ho\,ever.

\ number of codes. n me quite general. based on the block structure have emerged, allowing CID applica-
ti,ns on full-riircraft and other general configurations Some of these block codes are FAGI.E (Refs. 1,2.
31)GRAPF (Refs. 3,4), NUGGET (Ref. 5). GRID-3D (Ref. 6), GRIDG'N (Refs., 7,8), GENiE (Ref. 9), and the
code,. of Refs 10-25. The principal overlaid grid code is still that which coined the chimera name (Ref. 26). but
this approach is also applied in Refs. 27 and 28. Some applications of hybrid grids have been made to general
configurations. cf Refs 29.30

Jechnkiues

Algebraic grid generation today is generally based on transfinite interpolation, which provides a general
mechanism for combining one-dimensional interpolation formulas into a 3D framework which matches all the
boundaries of a region. With trdnsfinite interpolation, a grid is generated in the interior of a region algebraically
by interpolation from the entire (closed) boundary of the region, and perhaps from some interior specified or
control surfaces. The basis of this multidimensional interpolation can be either Lagrange (linear) or Hermite
(cubic) interpolation, the latter allowing boundary orthogonality. The blending functions which accomplish the
interpolation can be linear, but a better choice is based on normalized are-length distribution, itself interpolated
from the boundaries by transfinite interpolation of one less dimensionality. This latter procedure allows bound-
ary point distributions to be reflected tbrmighoiut the fild Ssplin, hle-'.g functions defined by specified pointdistributions are also used. Transfinite interpolation can produce boundary or grid-line overlapping, particularly
with fiermite interpolation. for some configuration shapes, and interior surfaces (actual or control) are employed
to prevent such overlap. Another device used to prevent grid overlap, and also to control the orientation and
spacing of grid lines, is the division of blocks into sub-blocks for the purpose of the interpolation only, not
affecting the block data structure. Values on the sub-block interior boundaries can either be specified for explicit
control, or can he interpolated from the edges by transfinite interpolation of one less dimensionality. Grid
overlap is a problem with algebraic grids, particularly when Hermite interpolation is used for boundary ort-
hogonality. Overlap can also occur with elliptic grids, but often the elliptic system can unravel an overlapped
algebraic gtid.

Transfinite interpolation is the fundamental basis of the composite-block codes of Refs. 19-21, 24-25, and 9,
and is also commonly used to generate an initial algebraic grid in codes based on elliptic generation, e.g. Ref. 1.
The algebraic codes often use an elliptic system as a smoother, cf. Refs. 24,25, and 9. Additional control of the
algebraic grid in the interior of the field can be exercised by including interior "support" surfaces in the interpola-
tion as in Refi 24 and 25. Related to this is the use of spline blending functions employing interior points as in
Ref. 31. Other algebraic approaches that have been used in composite-block grids include the curve-based
system of Refs. 22 and 23, and interpolation from nodes, Ref. 32, following finite element technology.



Elliptic grid generation involves the solution of a set of partial differential equations for the grid, usually by
point SOR iteration for general configurations. With point SOR iteration, locally-optimum acceleration parame-
ters shotld be used for robustness, and directed (based on the sign of the control functions) one-sided differences
should be used for the first derivatives. These equations involve control functions which control the orientation
and spacing of the grid, and which can enforce boundary (or interface) orthogonality. These control functions
can be evaluated automatically by transfinite interpolation from the boundaries of the region, or can be evaluated
from an initial algebraic grid and then smoothed. In the latter case, the smoothing should be done only in the two
directions other than that of the control function. With control functions determined from the algebraic grid in
this manner, the elliptic system produces a grid that has the same general distribution as the algebraic grid but
which is smoother. With the control functions evaluated by interpolation from the boundaries, the spacing and
curvature parts of the control function should be evaluated on different boundaries and interpolated separately
into the field. The spacing component is evaluated on the sides logically parallel to the direction of the control
function, and interpolated by transfinite interpolation of one less dimensionality, while the curvature term is
e\ aluated on the other two sides and is interpolated one-dimensionally. This approach allows the boundary point
distribution to be reflected into the field. Boundary orthogonality is achieved by iterative adjustment of the
control functions. All of these techniques for elliptic generation systems are discussed in detail in Ref. 33.

An elliptic generation system is the fundamental basis of the composite-block codes of Refs. 1-18 and 34-35.
Of these, the code of Refs. 3 and 4 is based on slope continuity at block interfaces. The rest use a surrounding
laser of points around each block to achieve complete continuity at the interfaces. Many of these codes incorpo-
rate itcrI %e adjustment of control functions for boundary ortho- gonality, and also for use on interfaces in order
to alloxs nore control of the grid. Still more control is possible with the provision of applying this feature on
interior surfaces within blocks as in Refs. 1,2 and 15,16. Various forms of interpolation of the boundary control
functions into the field in the course of this iterative adjustment are in use. The original source of the procedure,
Refs 3.4. uses exponential interpolation, while Ref. 36 uses a power-law decaying interpolation with subsequent
modifications of the control functions to improve smoothness and reduce skewness. The code of Refs. 1,2 does
not interpolate the control functions from the boundary, but rather applies the orthogonality on each successive
surface off the boundary to a decaying degree. In any case, it is important to have good control over the extent of
the orthogonality from the boundary since different configurations and different applications, e.g. Euler, Navier-
Stokes, call for different extent of orthogonality into the field. Ref. 35 uses the biharmonic equation, which
admits an additional boundary condition that can be used for boundary ortho-gonality.

Surface Grids

[he specification of the boundary point distribution is a two-dimensional grid problem in its own right, which
can al.so be done either bv transfinite interpolation or an elliptic generation system. In general. this is a 2D
boundar% value problem on a curved surface. i.e., the determination of the locations of points on the surface from
specified distributions of points on the four edges of the surface. This is best approached through the use of
surface parametric coordinates (cf. Refs. 37,38,1-2. and 14) whereby the surface is first defined by a 2D array
of points, e.g. a set of cross-sections. The surface is then splined (hi-cubic), and the spline coordinates (surface
parametric coordinates) are then made the dependent variables for the interpolation or the elliptic generation
Ntem The generation of the surface grid can then be accomplished by first specifying the boundary points on
tlhe four edges of the surface grid. converting these Cartesian coordinate values to parametric coordinate values
on the edges. then determining the interior values of the parametric coordinates from the edge values by the
Lcneration system, and finally converting these parametric values to Cartesian coordinates. The surface grid
I!Vneraton , ,Item can operate %kith the surface parametric coordinates taken as arc lengths along the t\o defining
directions on the surface. but this has the disadvantage of requiring a search to locate the particular spline patch
The need for this search can be eliminated by taking the point indices on the surface definition as the surface
parametric coordinates.

1l'nt Distributions

The starting point of grid generation is the setting of a point distribution on a curve, and this can be done b\
splining the set of points defining the curve and then placing the desired number of points on the spline curve
according to a relative arc length distribution. The point distribution on curves is probably best done in terms of
normalized arc length using the hyperbolic functions that have been shown to reduce the truncation error induced
h the unequally spaced points (Refs. 39,40. cf. also 1,2,41). These functions can also be employed as the
biending functions in transfinite interpolation by interpolating normalized arc-' -ngth distributions from the
boundaries (cf. Refs 1.2). Another approach to point distribution is that tiased on exponential functions, with
sartable exponents or with exponents of exponents for additi, nal control (cf. Refs. 42 and 3). These functions
arc used in Ref. 42 to control orthogonality and grid overlap as well.

Orthogonalit

Coordinate systems that are orthogonal, or at least nearly orthogonal, near the boundary make the application
of boundary conditions more straightforward. Although strict orthogonality is not necessary, the accuracy dete-
riorates if the departure from orthogonality is too large. The implementation of algebraic turbulence models is
more reliable with near-orthogonality at the boundary, since information on local boundary normals is usually
required in such models. The formulation of boundary-layer equations is also more straightforward and unambi-
guous in such systems. It is thus better in general, other considerations being equal, for grid lines to be nearly
normal to boundaries.

Construction

The construction of a block grid normally begins with the siecification of the four edges of a logically-rectan-
gular surface patch. These edges are either defined directly as space curves or as parametric curves on a splined
curved surface. The surface grid on the patch then is generated by either transfinite interpolation or from the
elliptic system. In the case of generation on a curved surface, the interpolation or the elliptic solution is done in
terms of the parametric coordinates, after which the Cartesian coordinates are recovered from the splined
surface. The surface grid generation may itself be done in a block format, with complete continuity across the
patch interfaces. When surface grids have been generated on all six sides of each block, the 3D grid in the block
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is geneated by transfinite interpolation or from the elliptic system, taking account of continuity connections
across the interfaces.

The composite-block grid construction thus basically involves the generation of block edges, then faces, and
finally volumes. The six faces bound the volume, and four edges bound a face. The edge generation is simply the
placing of a Doint distribution on a curve, which may either be defined and then splined, or may be constructed
geometrically. Definition may be by input cross-sections, plane-patch intersections (Ref. 35), by a curve gener-
ated parametrically on a specified spline curved surface (cf. Refs. 1,2), or by other means. With the four edges in
place, the face can be generated as a defined surface or may be constructed in free form. With a defined surface,
the generation can be done in terms of surface parametric coordinates on the splined defined surface by transfi-
nite interpolation or by an elliptic system (Refs. 1,2,38). The use of surface parametric coordinates allows
general surfaces to be treated. By contrast, the use of projection onto planes, or the use of a functional relation-
ship for one Cartesian coordinate in terms of the other two, restricts the generality and requires the provision for
rotations to put the surface in an orientation that can be treated. Therefore generation in terms of surface
parametric coordinates is the preferred method of surface grid generation.

Surface definition is a significant problem in itself. Some approaches are the various forms of patching, e.g.
Coon's patches (cf. Ref. 41), B-spline patches (Ref. 43). and transfinite interpolation (cf. Refs. 1,2,31). Assem-
blies of cross-sections are also used, either input directly (cf. Refs. 44,45) or formed as plane-patch intersections
(Ref. 35). Considerab!e effort is now being directed at surface definition for grid generation directly from CAD
constructions (cf. Ref. 8).

Surface intersections can be done by splining the intersected surface, and one family of lines on the intersect-
ing surface, and then using a three-variable Newton iteration to determine the intersection curve (cf. Refs 1,2,38,
and 41).

The collapse of block faces into lines or even points greatly increases the generality of the composite-block
structured grids, and such degenerate faces do not require any special treatment in finite volume flow codes.
This feature is probably employed in most codes, and Refs. 1,2,4,11, and 13 are representative. This face
collapse also allows axis singularities to be included. Ref. 46 introduces a bifurcation singularity for a branching
pipe that allows the use of a cylindrical-type grid in the branched system.

User Interface

Fhe man-time involved in grid generation is being greatly reduced by graphical user interfaces whereby the
user .)perates the code and constructs the grid piece-by-piece on the workstation. To be really effective, how-
exer. the interface must build a file of input commands which can be subsequently edited or submitted again to
reproduce the grid. Otherwise, the user must start again from the beginning, and although the grid is saved, the
construction process is not. It is really the construction process that must be saved, since the process can be quite
length; and %kill undoubtedly be useful again vwhen modified or when used as the basis for yet another problem.

The interface must have some mechanism for identifying important points, curves, surfaces and spacings, and
some means of incorporating these in the saved construction process that will allow changes in the number of
points or spacing on a segment, or the position of a segment, to be automatically propagated throughout the
consti uction process

A complete grid package will contain a front-end boundary code to prepare the boundary segments for the
grid code This front-end code m,v be an interface from a CADICANI system, or may be a curve and surface
construction mechanism in itself. The detinition of boundary geometry for real configurations continues to be a
significant problem. It should be noted that many solid modelers are meant to produce surfaces, not to reproduce
existing surfaces with exactitude

Considerable effort is now being directed at the development of efficient and effective interactive interfaces
for grid generation systems. in order to reduce the still considerable man-time required for grid generation for
complex configurations. Interfaces for surface construction are included in Refs. 8,43, and 47. Ref. 1 includes
an interface from PATRAN, and Ref. 48 redefines a grid algebraically in terms of control points which can then
be interactively moved to alter the grid. Ref. 49 notes a general interface system that has been attached to several
general composite-block grid codes, in particular those of Refs. 1,2, and the 211) form of Ref. 5. A number of
other user interfaces have also been reported, cf. Refs. 7,9,16.20-25, and 50, clearly indicatie of the importance
ascribed to interactive graphical interfaces to grid generation.

Of particular importance is the addition of automatic topology generation for the construction of the block
structure Refs 10 and I I use a graphically-interactive interface with topology defined by basic slits in the
computational field corresponding to the various components of the physical boundary. A similar approach is
taken in Ref. 13, but with the inclusion of a hypercube topology generation to form the composite-block structure.
These systems allow various block topologies to be included by providing for block faces to be collapsed to lines
or even points. Considerable interest is being expressed in the use of artificial intelligence to form the block
structure, but only Ref. 51 reports any working system, and that is in 2D.

Parll Processors

Interest is naturally developing in applications of grid generation on parallel processors since the composite-
block structure forms a natural domain decomposition within which the various blocks can be assigned to differ-
ence processors, or can be treated as different computing objects. Ref. 34 reports such an application on a shared
memory system of an elliptic generation system using the surrounding layer of points for complete continuity.

4. ADAPTIVE GRID SCHEMES

Finally, dynamically-adaptive grids continually adapt to follow developing gradients in the physical snlution.
This adaption can reduce the oscillations associated with inadequate resolution of large gradients, allowing
sharper shocks and better representation of boundary layers. Another advantageous feature is the fact that in the



viscous regions where real diffusion effects must not be swamped, the numerical dissipation from upwind biasing
is reduced by the adaption. Dynamic adaption is at the frontier of numerical grid generation and may well prove
to be one of its most important aspects, along with the treatment of real three-dimensional configurations through
the composite grid structure.

Adaptive Strategies

There are three basic strategies that may be employed in dynamically adaptive grids (cf. Ref. 52) coupled with
the partial differential equations of the physical problem. Combinations are also possible, of course:

(1) Redistribution of a fixed number of points.

In this approach, points are moved from regions of a relatively small error or solution gradient to regions of
large error or gradient. As long as the redistribution of points does not seriously deplete the number of points
in other regions of possible significant gradients, this is a viable approach. The increase in spacing that must
occur somewhere is not of pract;.al consequence if it occurs in regions of small error or gradient, even though
in a formal mathematical sense the global approximation is not improved. The redistribution approach has
the advantage of not increasing the computer time and storage during the solution, and of being straightfor-
ward in coding and data structure. The disadvantages are the possible deleterious depletion of points in
certain regions, and the possibility of the grid becoming too skewed.

(2) Local refinement of a fixed set of points.

In this approach, points are added (or removed) locally in a fixed point structure in regions of relatively large
error or solution gradient. Here there is, of course, no depletion of points in other regions and therefore no
formal increase of error occurs. Since the error is locally reduced in the area of refinement, the global error
does formally decrease. The practical advantage of this approach is that the original point structure is pre-
served. The disadvantages are that the computer time and storage increase with the refinement, and that the
coding and data structure are difficult, especially for implicit flow solvers.

(3) Local increase in algorithm order.

In this approach, the solution method is changed locally to a higher-order approximation in regions of rela-
tively large error or solution gradient without changing the point distribution. This again increases the formal
global accuracy, since a local increase is achieved without an attendant decrease in formal accuracy else-
where. The advantage is that the point distribution is not changed at all. The disadvantage is the great
complexity of implementation in implicit flow solvers. This adaptive approach has not had any significant
application in CFD in multiple dimensions.

Redistribution

Adaptive redistribution of points traces its roots to the principle of equidistribution of error by which a point
distribution is set so as to make the product of the spacing and a weight function constant over all the points. A
competitive enhancement of grid smoothness, orthogonality, and concentration can be accomplished by repre-
senting each of these features by integral measures over the grid, and minimizing a weighted average of the three.
The one-dimensional form of this leads, in fact, to the equidistribution principle. A second approach is to note
the correspondence between the equidistribution principle and the one-dimensional form of the commonly-used
elliptic grid generation system. This leads to a connection between the control functions in the elliptic system and
the derivatives of the weight function. This control function adaptive approach has the significant advantage of
being based on the same elliptic generation equations that are in common use in grid generation codes, and the
adaptive control functions can be added to those already evaluated from the configuration geometry.

Recent applications of the variational form of adaptation are given in Refs. 53-55, but none of these use
partial differential equations. The last of these bases the formulation on principles of continuum mechanics.

The control function form of grid adaptation is used in Ref. 56 for a general composite-block structure.
Other applications appear in Refs. 57-60. A block-structured adaptive grid is also given in Ref. 61, but with
adaptation to follow streamlines.

One-dimensional adaptation, generally applied in alternating directions in multiple dimensions, is used in
Refs. 62-64. Here both tension and torsion spring analogies are used to control both the grid concentration and
skewness.

Refinement

The addition of points cdn be used with structured quadralateral grids, as well as with unstructured grids, and
Refs. 65 and 66 are recent examples. The latter reference compared grid refinement and redistribution, finding
little difference in the 2D transonic Euler solution considered.

Other Approaches

Adaptation is included in a hypberbolic generation system in Ref. 67, and in a parabolic system in Ref. 59.
Finally, new approaches to grid adaptation are given in Refs. 68 and 69, the former based on harmonic maps and
the latter on parametric mapping on a surface.

5. CONCLUSION

Among the advantages to be cited for the composite grid approach are the following:

(1) ease of treatment of complex configurations.
(2) capability for local refinement and modification.t (3) rduced core storage.

4) natural use of different flow equations in different regions.
5 grid singularities can be placed on block boundaries.
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A second point is that because of the emphasis on composite grids, the tasks of subdividing the grids, generat-
ing surface grids, and providing interfaces have become more time consuming and critical than the task of
generating the interior, rids. The papers on composite grids in Refs. 70 and 71 either strongly hint at, or explicitly
note, that how a grid - )uld be subdivided depends on the geometry, the numerical algorithm used, the flow
features, etc. So, given a limited computer resource, the sub-grids of a composite grid must be selected with
care. This implies a learning process and a need for human interaction. Like geometry definition, the tasks of
subgriding, interfacing, and surface grid definition are being assigned to interactive workstations. Various levels
of sophistication in treating these problems in this way are evident in the papers. What is strongly implied is that
these are not simple tasks or ones for which off-the-shelf software is available. This is evidently a pacing area of
research in complex grid generation.

Surface grid generation is seen to have a dominant effect on the quality of the volume grid, to be very time-
consuming, and to be in considerable need of improvement in regard to the specification of boundary data sets
and the interactive manipulation thereof. Surface definition continues to be a pacing problem. There is a feeling
that more emphasis should be put on the development of CAD geometry tools especially suited to the needs of
CFD.

The topological definition of the block structure is seen to require considerable experience and to be difficult
to teach. There is need for automation of this process, perhaps through the use of artificial intelligence or other
means.

The critical need for graphical interaction, especially in regard to surface grid generation, block definition,
and grid control is evident. Codes should have an efficient and effective user interface with error-checking and
on-line instruction. The process of grid generation for complex configurations still requires too large an amount
of man-time.
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ABSTRACT

An algebraic technique for generating block-structured grids of arbitrary topology is des-
cribed. The method is based on a macro-block concept which allows the usage of large blocks
with partial block boundary interfacing. Various spline procedures are used for curve gene-
ration and for constrained surface grids whereas all unconstrained surfaces and volumes are
gridded by transfinite interpolation. Instead of using derivative information to control
the grid in each block the present method is based on the idea of generating as many inte-
rior guiding surfaces as required for grid control and gridding each resulting sub-block
independently of other sub-blocks. The resulting metric discontinuities, both inside blocks
and between blocks, are sm fthed either by a local algebraic smoothing procedure or by a
global elliptic type smoothing procedure or combinations of both. The complete method has
been coded in a highly modular way and includes all graphics routines. Several 3-D multi-
block grid examples are presented and discussed.

INTRODUCTION

In recent years a number of general purpose computer codes for the generation of 3D multi-
block structured grids with arbitrary topologies have been presented in the literature 1,2,

3 .

Although much work evidently has been spent on making these codes as easy to use as possi-
ble, the problem of automating various features such as the block-structuring process for
arbritrary geometries is still unsolved. Since a satisfactory solution to these automation
problems seems to be several years ahead in time, it is fair to say that the existing grid
codes are really tools with which the experienced user generates whatever grid he can envi-
sion and is able to create. In other words, the user's experience and skills with any given
grid generation tool are just as important as the actual tool. The tools may differ in terms
of how quickly the average user learns to use them satisfactorily or in terms of what the
experienced user can accomplish with them, but in all cases the end result depends to a
large extent on the user's skills, motivation, experience, knowledge of the overall problem,
etc. It seems unlikely that this situation will change significantly in the near future.

The purpose of this paper is to present the authors' own version of a 3D multi-block grid code
(G3DMESH) and to demonstrate some of its capabilities. It is similar to other such codes
in that it is essentially a grid generation tool. In fact, it is more like a toolbox with
all the tools necessary for defining block structure, generating grid curves, grid surfaces,
grid volumes, exercise grid smoothing, metric checking, graphics, block redefinition, disc
storage, etc. Although some features of the code are based directly on the first author's
previous work in this area 56,7 , many new features are also included. In the following para-
graphs we first outline the overall method, then give some grid examples, and finally some
concluding remarks.

OUTLINE OF METHOD

Block structure

The present multi-block grid generation scheme is based on a "macro-block" concept in which
block sizes are not constrained by block interfacing. This feature is achieved by allowing
"partial boundary interfacing", i.e. any part of one block boundary may be connected to any
compatible part of another block boundary. In most applications this flexibility allows the
user to define much fewer and larger blocks than would be the case with "complete boundary
interfacing". An illustration of this effect is given by a 2D example, a C-type grid around
two airfoils (Fig 1). Here it is seen that with complete boundary interfacing a minimum of
16 blocks is required whereas only 3 blocks are needed when partial boundary interfacing is
allowed. This difference is even more pronounced in 3D applications.

The advantages of the macro-block approach are obvious, not only for the grid generation
phase itself but also for the equation solution phase. There are fewer blocks to keep track
of, a smaller number of interfaces to be defined, less boundary overhead and more efficient
vectorization in the equation solver. A potential disadvantage of the macro-block approach
is the fact that partial boundary interfacing is slightly more complex than complete boun-
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dary interfacing. However, in the present method a very efficient partial boundary inter-
face scheme has been devised, both for the grid generation code and for the equation sol-
ver, which effectively solves this problem. Each interface is defined by two sets of data,
one for each side of the interface. These data sets consist of eight integers; four inte-
gers to define a reference corner point, two integers to define two directions and two
integers to define two dimensions (Fig 2). In special interface routines this data is used
to set up a complete mapping between the reference grid system and a local interface grid
system which spans across the interface in question. Any operation which needs to be car-
ried across the interface is easily done so using this mapping.

Grid generation

The present grid generation procedure is based on the idea of "piece by piece" building of
the desired grid blocks 6', That is, each grid block may be built up in several steps where
each step constitutes a specific operation such as curve generation, surface generation,
volume generation, etc. The tools which perform these operations are completely general
and may be applied to any grid block or part of a grid block. In other words, grid curves
and grid surfaces can be defined in the interior of a block as well as on its boundaries.
This feature is very useful since it allows the user to introduce any desired grid control
in each block.

Constrained grid curves are here generated using cubic spline interpolation whereas uncon-
strained curves are usually generated by two-point splines with optional direction control
at the end points. As mentioned above a grid curve can be defined in any desired location
in any desired block.

Constrained surface grids can either be defined using bicubic spline interpolation or else
read from external files. The latter option is often used for more complex geometries where
intersections between various independently defined surfaces must first be determined. In
the present version of G3DMESH there are no such CAD/CAM tools included. Unconstrained sur-
face grids are generated either as multiple curves or by transfinite interpolation, depen-
ding on whether two or four boundary curves are defined. In the latter case arc-length
weighted blending functions 7 are used for optimal results. No derivative information is
used in the present version, i.e. only the bounding curves are used in the transfinite
interpolation procedure.

Volume grids (fully defined blocks or sub-blocks) are here generated by transfinite inter-
polation, again using arc-length weighted blending functions. Two different options are
implemented, one for the case when only four bounding surfaces are defined and one for the
case when all six bounding surfaces are defined. As in the surface generation case no deri-
vative information is used in the transfinite interpolation procedure, only the grid points
of the bounding surfaces. At first sight this might be seen as a severe limitation since
the use of derivative data is a very effective way of controlling the grid s . However, the
possibility of generating interior grid surfaces in any desired block and applying the vol-
ume grid generator in between these guiding surfaces makes the present approach just as
powerful as any method using derivative data.

Grid smoothing

Due to the "piece by piece" building of the complete grid system there will in general be
several metric discontinuities, both inside blocks and between blocks. If the psysical
boundaries have metric discontinuities such as edges or corners these will also spread
into the domain. This situation is usually unacceptable, at least for finite-difference or
finite-volume equation solvers, and some smoothing has to be applied to these metric dis-
continuities. In the present method there are two alternative "tools" for grid smoothing;
a local algebraic smoother and a global elliptic type smoother. The local smoother is a
one-step projection type procedure based on transfinite interpolation with cubic blending
functions in the direction normal to the discontinuity7 . It is a computationally efficient
smoother which is easy to apply for "concentrated" metric discontinuities, i.e. disconti-
nuities that are confined to certain grid surfaces or block boundaries. A disadvantage
with this smoother is that the user has to specify the region where it is to be activated,
but the great advantage with it is the fact that it is entirely local and thus does not
alter anything outside the active region.

The other grid smoother is, as was mentioned above, a global elliptic ty e smoother. It is
based on the standard spatial operator used for elliptic grid generation
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together with a Jacobi iteration 
scheme

-(n+1) = (n) )(n) (2)
r . r(n + X(D r)(2

where the locally determined relaxation parameter is chosen such that high spatial fre-
quencies are damped as quickly as possible. The purpose of this procedure is not to try
to solve the nonlinear elliptic equations, only to take enough iteration steps to damp
out metric discontinuities. In the present version no source terms are used which means
that usually about 20 steps can be taken before undesirable changes in the grid begin to
appear. However, in all cases tried so far this has been more than sufficient to eliminate
all visible discontinuities. This smoother is simpler to apply than the local one (only
the block interfacing data is needed) and has the additional advantage that it usually
corrects any local grid inversions that may have been created in earlier stages. However,
it is not as computationally efficient as the local smoother.

Additional features

There are of course many additional "tools" in the G3DMESH grid code. For example, there
are checkinq routines which "measure" various quantities such as cell volumes, grid spa-
cings, directions, etc. Several graphicsroutines are available, both for plotting curves
and surfaces with any desired viewing angles. Special routines are also included with
which the user can duplicate curves/surfaces and translate/rotate them in any desired
manner. Block interfaces with periodicity conditions are also included so that grids for
turbomachinery applications can be generated. One of the latest additions to the code is
a "reblocking" option, i.e. a possibility of changing the block structure for a given grid
system. Since most grid systems have non-unique block structure (at least in the macro-
block case) it is often advantageous to use one block structure for the grid generation
phase and another one for the equation solution phase. A 2D example which demonstrates
this is shown in Fig 3; a C-type grid around an airfoil/flap combination. A five-block
grid is the natural choice for generating the grid (with the present method, not necess-
arily with other grid codes) whereds a three-block grid is more natural for the flow sol-
ver (at least for the authors' flow solver).

Code structure

The grid code G3DMESH is built around a global data base containing the block structure
and grid points. All arrays are one-dimensional and a pointer system is used to convert
between block mode addressing (which is all the user needs to worry about) and sequential
mode addressing cf grid points. Each function or .oui which the user can call upon con-
sists of a subroutine which accepts certain input from the user and in return works upon
the data base and performs whatever task it is designed for. This highly modular code
structure makes it easy to include new or improved subroutines whenever the need arises
without invalidating the old functions.

EXAMPLE GRIDS

The present grid code, G3DMESH, has been applied to a number of different cases and has
turned out to be a very powerful and versatile grid generation tool. As a first demonstra-
tion we present the case of a simple wing-body combination (Fig 4). Here we have used a
two-tlock grid which is of 0-type around the fuselage and H-type around the wing. This
grid system was built by generating four interior grid surfaces in each block in addition
to the block boundary surfaces, a task which was easily and quickly done by using the curve
generators and transfinite surface interpolators. The purpose of these interior surfaces
was to control the grid around the wing in terms of spacing and orthogonality. A concen-
tration at the leading edge, trailing edge and tip of the wing was desired and achieved
through this technique. In this case only the local algebraic grid smoother was used,
mainly to demonstrate that it is possible to achieve smooth grids with purely algebraic
methods. However, the global elliptic smoother described in the previous section performs
equally well, with less input data but with more CPU time. Typical execution times when
running the complete session file from start to finish are about 30 CPU-seconds on a VAX
8700 with the algebraic smoother and about 5 CPU-minutes with the elliptic smoother.

Next we present two more "realistic" cases; the proposed HOTOL aerospace plane and an old
version of the HERMES reentry vehicle (Fig 5). The same type of two-block grid structure
as in the previous case was used for the HOTOL geometry whereas a single block grid was
used for the HERMES geometry. Only the algebraic smoother was applied in these cases. Flow
solutions (Euler :omputations) have been obtained on these grids, using our own multi-
block time-marchiig Euler solver G3DEUL, and various aspects of the computed flow fields
such as shocks and total pressure loss indicate that the presented grids are realistic in
terms of relative spacings and orthogonality at surfaces. An item which may be of interest
in this context, although not directly grid related, is the performance obtained with the
Euler code on this type of macro-block grid. in several cases, involving single-block grids
up to six-block grids and grid sizes from 50000 to 150000 points, the multi-blogk Runge-
Kutta cell-centered finite-volume Euler code G3DEUL has achieved about 25 * 10- CPU-
seconds / grid point / time step on a Cray X-MP computer (single processor mode). This
figure is only about 30% higher than that for the corresponding old special purpose single-
block code. We feel confident that this relatively small overhead is due to the macro-
block technique and the efficient partial block boundary interfacing.
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The next example is an isolated supersonic intake geometry designed for a free stream Mach
number of 2.75 (Fig 6). The reason for choosing this case is two-fold: Firstly the flow in
the near vicinity of and inside the intake is important in itself and a good grid in this
area is always desirable. Secondly the interference between fuselage / wings and the in-
take is also important and a grid structure which allows the gridding of the complete fuse-
lage / wing / intake geometry is thus desirable. The grid presented here was primarily de-
signed for the first task but with the second task in mind, i.e. it is compatible with such
a "total" grid. As may be seen in the grid plot the interior of the intake is gridded as
one block with a wedge-type singularity at the beginning of the compression ramp. The ex-
terior region is then decomposed into three blocks, giving an H-type grid. Euler computa-
tions verify that this grid structure is sound and gives an accurate representation of the
geometry.

Finally, we present a more complex geometry; a schematic wing / body / air intake combina-
tion (Fig 7). Although not very realistic in terms of scale, this model has many of the
features of a real world fighter aircraft. The supersonic intake with boundary layer diver-
ter is here an important characteristic which the grid system must be able to cope with.
We have here chosen a 12-block grid to model the complete geometry. One block covers the
diverter region and a wedge-shaped region upstream of it, another block covers the interior
of the intake (as in the previous case), five blocks cover the near region around the fuse-
lage / wings / intake and finally another five blocks cover the remaining reion out to the
outer boundary. Only the global elliptic smoothing was used here and the intersection plots
clearly show the effects of the smoothing between grid blocks.

CONCLUSIONS

The grid examples presented in this paper demonstrate that the algebraic method described
above is a powerful grid generation tool. The combination of a user-controlled "piece-by-
piece" building approach, transfinite interpolation and local/global grid smoothing proce-
dures makes it possible to input, in a very direct and easily understood manner, any degree
of grid control needed and to smooth out any metric discontinuities, inside blocks or bet-
ween blocks. A highly modular code structure ensures that improved or new functions can
be adied to the code without invalidating previous functions. The generality of the data
basc used in the code also ensures that any new or improved future techniques can be easi-
ly implemented.
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C-type grid around airfoil'f1ap geometry Most natural block
striwc'ure for grid generation

Fig 3b

Same as above but with reblocked grid to obtain block structure
more natural for flow solution



Fig 4

Two-block grid around schematic wing-body geometry Only local
algebraic smoothing used
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Two-block grid around the
HOTOL aerospace plane

Single-block grid around
the HERMES (old version,
reentry vehicle

Mach contours of Eujer
solution on surface and
in synnetry plane for
freestream Mach number 2 0
and 10 degrees incidence



I-D BLOCE-STRUCTURED GRID FOR StJPERS,)NI, INTAKE GEOMETRY

NG. OF BLOCKS: 4

BLOg 4

Fo~~bioc gri arond ad inade 2D uperonicintae Inerio
block ~ ~ ~ BOC 2a aRI Sedge-typ nuatylogheedngEeoth

raOCp 3u~ IriTRTE biOWk THEoptbe ihattl rdaon
completeD SuselaMeSUngRintak



Interior of inlet and boundary
Surface grid layer diverter region gridded

rner egion. gridded

outer regi1-n gridded
........ 5 blocks

12 block grid for scnematic wing'
ruselage/inlet combination Ony
global1 ellip~ic grid smoothing used

V ev or COffipte grid
sys t em



3-1

Scinin upstream extension of

dietrregion

Section downstream of inlet ramp
leading edge

Section just upstream of inlet cowl

Section Just downstream of inlet cowl

Fig 7b

Details of various grid sections for sam grid as in Fig 7a,
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1 SUMMARY

Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and
transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of
interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an
interactive, environment, called the Control Point Form of Algebraic Grid Generation is described. The applications
discussed are three-dimensional grids constructed about airplane and submarine configurations.

2 INTRODUCTION

The numerical solution of fluid flow problems is directly dependent on the discrete representation of the solution domain.
A discrete representation is called a grid or mesh, and the term grid will be used throughout this paper. A grid is a set
of points and an implied rule or an explicit table specifying the connectivity of the points. If the implied rule is an index
systemrIJ which is associated with the computational domain, the grid is said to be structured, and the neighboring points
of a given point are implied by the preceding and following indices. If the points are irregularly distributed over the solution
domain, and there is no rule implying which points are neighbors, then the grid is said to be unstructured. In this case, a
table called a connectivity table must be created to specify which points are neighbors.

A numerical solution technique for the governing equations does not have a preference for how a grid is generated, but
solution software must be developed in accordance with the topology of the solution domain and the structure of the grid. A
grid covering a solution domain can consist of several structured blocks, in which case, the connectivity of the blocks must be
specified. If the grid is unstructured, then the connectivity of the individual points must be specified. It is also reasonable that
a solution domain be covered by a combination of structured and unstructured grids[2]. In any event, it is quite important
for the accuracy of a solution that there is an adequate number of grid points to cover the solution domain, that the grid is
boundary-fitted, and that the grid points are concentrated in regions where there are high gradients in the solution[3]. It is
also important that the spacing between points varies smoothly, and that the the skewness not be excessive[41.

Algebraic grid generation techniques are interpolation or approximation procedures that relate a computational domain,
which is a rectangular parallelepiped (a square in two dimensions and a box in three dimensions), to an arbitrarily-shaped
physical domain with corresponding sides[3]. A side in the computational domain can map into a line or point in the
physical domain, in which case, a singularity occurs in the mapping. Singularities do not pose a problem to finite-volume
techniques[51, which dominate current solution approaches for fluid flow, nor do singularities affect solution techniques that
use unstructured grids. The interpolations are univariate functions of the individual coordinates in the computational domain,
which are combined in a Boolean sum to create the complete transformation. Often, for a particular application, a higher
order and more sophisticated interpolation is used in one coordinate direction, which we will call the primary coordinate
direction; and low order interpolation, such as linear interpolation, is used in the remaining coordinate directions.

There are as many ways to generate algebraic grids as there are interpolation methods. It is impossible to cover all
methods, but general characteristics of transfinite assemblies of univariate interpolation are briefly reviewed. A newly-
introduced method called the Control Point Form of Algebraic Grid Generation is described.

Algebraic grid generation methods are very efficient and work very well in conjunction with interactive computer graphics.
The application of the Two-Boundary Technique in an interactive environment is discubsed. Also, the Control Point
Form of Algebraic Grid Generation is advocated for interactive applications.

Applications of algebraic grid generation are varied. Herein, we present applications of the Two-Boundary Technique,
Control Point Form of Algebraic Grid Generation and Lagrangian Interpolation in the context of Transfinite
Interpolation. The applications are three-dimensional grids about airplane and submarine configurations.
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Figure 1: Transformation Between Computational and Physical Domains

3 TRANSFORMATIONS AND GRIDS

Generally speaking, all algebraic grid generation techniques can be thought of as transformations from a rectangular
computational domain to an arbitrarily-shaped physical domain. This is shown schematically in Figure 1 and as a general
equation:

x( , ,¢) x = ( ,,17,) ,
X(Crj, 0 ( I 71

z ( , 17, 0 )

0< < 1, 0< <1, 0 < < 1.

A discrete subset of the vector-valued function: X( ,, qb, ) is a structured grid for

where i = 1,2.3. ,L, j = 1. 2,3,..-. M, and k = 1, 2, 3,. N. The relationship between the indices i, j, and k and
the computational coordinates 4. tj, and ( uniformly discretize the computational domain and imply a relationship between
discrete neighboring points. The transformation to the physical domain produces the actual grid points, and the relationship
of neighboring grid points is invarient under the transformation.

An unstructured grid can be defined on the computational domain by subdividing the domain into triangles in two
dimensions and tetrahedrons in three dimensions. A tetrahedron is defined by four points and has four faces. The i'"

tetrahedrop is denoted by

T [F,F,F , ,

where i = 1, 2,3,... I, and the four faces are each defined by three points

F,, = X,, (&,, y1k, (k ) ,

where i= 1,2,3,. , = 1,2,3,4, and k = 1,2,3. A table must be created such that

F,, 4= TABLE F,

i~t

If the computational domain is discretized in an unstructured manner, then the grid points in the physical domain have
the same unstructured relationship. This is because of the invariance of the relation between points under the transformation
expressed in the general form of the first equation. Thus, algebraic techniques are capable of producing either a structured
or an unstructured grid.

For complex physical domains where structured grids are employed, it is most often necessary to create many blocks[l],
where each block has the general form of Eq. 1. In this case, the connectivity of the blocks must be specified. That is, an
explicit table is generated which denotes the blocks and the corresponding grid points at block interfaces. Two approaches
that are also multi-block, but do not use exact grid point overlap are; the Conservative Interface Approach[6] and
the CHIMERA[71 grid scheme. In the conservative interface approach, grid points from different blocks meet at common
interface surfaces but the grid points do not coincide (Fig. 2). Variables in a flow solution are transferred from one block
to another in such a manner that the variables are conserved. In the CHIMERA scheme, grid blocks overlap, and in a flow
field solution, variables are simply interpolated from one block to another without assurance of a conservation property.

The primary advantage of structured grids is simplicity. When the number of structured grid blocks becomes large, the
simplicity is lost. In order to maintain simplicity where it is needed, such as in a boundary layer, and to accommodate
geometric complexity, it is likely that combinations of structured and unstructured grids will prevail.
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Figure 2: Discontinuous Grid Interfaces

4 TECHNIQUES

The interpolation methodology that dominates algebraic grid generation is called transfinite interpolation. This method-
ology was first described for grids by Gorden and Hall [8], and the advantage is that it pr,,ides complete conformity to
boundaries. Transfinite interpolation has since been described many times[1,3,8,91. However, a basic description is included
herein so that specific grid generation techniques that are characterized by this methodology can be discussed.

The ingredients of transfinite interpolation are univariate interpolations in the computational coordinate directions defined
by

L P

1 -0

u( , ~ 0,¢ =L2_ , X( '"0

a77"

N R

k=l f =o

(Da)()= 6,;6.,. (D"37)( 7 ,) = fl l= t(Dr)((,) = fili

z=1,2,-..,L, j = 1,2,.,M, k=1,2,,N,

0= , L,...,,P fin= O0,1,...Q, =o, 1,..., .

where D is a derivative operator. The tensor products are

L N R Pvv = = =u 775.Z : : (" t, ,

VW=WV= J a k. I -0 1.0 0

L MWN R Q P

U vw _-wv
.iUVW = F-Er F _E 1)( ' * x( 7"' "

.. I~ J.I k. 11.0 0.. 00(07-N
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The commutativity in the above tensor products is assumed in many practical situations, but in general, it is not guaranteed!
It generally depends upon the commutativity of the mixed partial derivatives. For the grid generation techniques that are
characterized by transfinite interpolation, they can be written as the Boolean sum

X( '~,) U 9V 9W

U+V+W- UV-UW- VW +UVW.

In the above equations, a' ( q), / (r/) and 7y (() are interpolation functions subject to 6 function conditions. The defining

parameters . 886' in the equations are positions (when i = m = n = 0) and partial derivatives (otherwise) in
the physical domain which are user specified. In this definition, the implicit assumption is that coordinate curves are to be
interpolated along with their derivatives. This occurs through a network of intersecting surfaces that must be specified. By
taking derivatives of this interpolation-theoretic framework, the interpolation functions, then specified, will have an effective
meaning only for derivatives - not for the surfaces. The result will be an approximation rather than an interpolation.

Under the umbrella of transfinite interpolation, there are many possible algebraic grid generation techniques. The most
successful techniques, however, have been those that provide adequate orthogonality control and grid spacing control with
acceptable functional complexity. For instance, the two-boundary technique described by Smith[10] uses Hermite cubic
interpolation functions in one coordinate direction between two opposing boundary surfaces. In the two remaining coordinate
directions. linear interpolation between opposing boundaries is specified. In a similar philosophy, Eriksson, in many of his
applications of transfinite interpolation[l 1j, has used Lagrangian interpolation functions, where two, three, or four surfaces
are specified in each coordinate direction. He has also used positions and derivatives at opposing boundaries[91.

A popular grid generation technique is the multisurface method described by Eiseman[12-15]. It is a very flexible univariate
scheme which is similar to Bzier and B-Spline approximation [16-171, where the parameters defining a curve are not on the
curve. In the latest version of the multi-surface method, the blending functions a,( ),I3,(rl) and -r(() are nontrivial only
over a local region. This means that the position parameters inside the region affect the grid in a local manner.

Recently, Eiseman introduced the Control Point Form of Algebraic Grid Generation (CPF)[18 which is a multiple
variable multi-surface transformation. In this approach, a sparse grid, denoted by q,,, is first generated. q,,, can be obtained
quite simply bv a transformation defined by linear interpolation functions in the transfinite interpolation methodology which
blends specified boundary data into the interior region. Alternatively, it can be obtained by attachment to any given grid.
regardless of how the grid was generated. Attachment is simply the process by which control points are placed in order to
essentially reproduce a given transformation or grid. The chosen number of control points for each direction is dictated solely
by the amount of control that a user wishes to specify. It is independent of the chosen number of grid points.

In keeping with the previous notation and interpolation structure, the univariate multi-surface transformations in the
three coordinate directions are

du Ox

= -(Da,)( )

avM
= y(D )(m) O

where

c" =0 forn 0, 3"=0 form$O, -40=0 fort'6O.

In this situation, it is the coefficients of the X derivatives, which are specified to interpolate those derivatives at successive
stations in the curvilinear variables. For example, in the first equation, the specification is for (Da,) rather than o. It is
simply the derivative which gets the Krouecker delta condition rather than the function a'. In formal terms, this is stated as

(Dn2,)(&) =6,,,, (D/T,)(,,,) = 6,,,,, (D%°)((,.) = 6k,,.

Upon integration together with the requirement that opposing boundaries are precisely adhered to, we get a sequence of
intermediate surfaces for each direction that appear in the form

L

U(,, = A,(t ,() + -- ,()[A,,(,() - (,,

v( )= B1(,O + B (,(t,)[B,+,( ,O -

IC -(
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where

a'- with 0 D~o

wit

o , (C ) 4

3 0,(0) with 0,.(C) =

wit to tb(N (D^I)da'

.here the constructive surfaces are reiaLed to the grid array X by

A t A ( , = X ( , , (,) + (CL( ) a x

* - O

13-(C,O X (C, 7,, () + 0, (,7., N

, co (C, 77) = x(C,,7, ,)+ 0+(

More details on this process can be found in Eiseman [15].

The primary control over the grid is exercised by the prescription of the surfaces A,. B, and C. This is done for boundary
conformity and for the shape of curves connecting opposing boundaries. The specification of surfaces, however, requires a
substantial amount of data, and accordingly, there is the problem of efficiently creating or manipulating them for the purpose
of generating grids. This problem is inherent in any algebraic technique that requires data in addition to the specification
of the boundaries. This includes the specification of derivative data only at the boundaries; for there, a vector specification
must be dealt with at each boundary point - an equivalent problem to that of specifying an entire surface.

While such specifications may not present an extreme burden in unidirectional techniques, they grow substantially with
a straight-forward multivariate assembly represented by the process of transfinite interpolation. This burden is particularly
accute in three dimensions where the specifications are for surfaces rather than for curves which would be the requirement

Sin two dimensions. In the straight-forward assembly, we must deal with the art of constructing surfaces or curves in each
coordinate direction together with the details of consistency between the surface or curve parameters for the distinct directions.

To overcome the burdensome constraints of dealing with constructive surfaces or curves in a consistent manner, we are
lead to the The Control Point Form of Algebraic Grid Generation (CPF). The central idea is to replace the surface
or curve specifications with sparse arrays of control points that can be used to generate the required surfaces or curves with
the same scheme that is employed between surfaces. Moreover, a control point array is used to generate the requisite surface
or curve data in all directions. This, accordingly, removed the need to deal with a consistency problem.

In our discussion, we will follow the development in Eiseman [18], but will depart from that discourse by first casting
the multisurface transformation in a surface weighted format that comes from a minor shuffle of terms. For the -direction

construction, we have

+ [ 1(C) - a°( ))A(r7,() + ... + -(4)AL,(r,

and by the same shuffle we get the parallel expressions for the q and ( directions of V and W respectively. Altogether, we
arrive at the form

L+l

U(C,,= ,A, (,.

M41

V = Z i(i)B,(CC),

N I

W((',,k,¢)= ( ( ( ),

where
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I-aW for i =1 1
a, = ao(j)-a,( ) for i = 2,...,L

&L (0 for i=L+l

S 1 - 0 () for j =1

-~J 3~(7)- ') for 4 2'.M

X M(77) for j M+1J 1 ~~C) for k =1

_¢--(() for i 2 ..,N

-Y, (for k = N + 1

In this format, the conditions for matching the faces of opposing boundaries are expressed by the pairs of equations:

A, (q, () = X(.,,C,()

A ,(,7, ¢) = X( ,, j, ()I

B ) = X},h, ,

Bm,,,() = X( , , , )

c' ( ,7) = x ( , ,7 )

That is. one pair of opposing boundaries is matched for each respective , 7 and C directional constructs as independently
represented by U, V and W.

To develop the CPF, we assume that there is a sparse array of control points

{q.,, :i=l.2 -.. L + , j=l,2 ..... f + 1, k= 1,2 ... N+1

where immediately we see that any normal sequence of control points can be used to generate a curve which connects the

first and last control points of the sequence. Those curves are given by

a Z(( o ~ ,( )q ...

MI

b,,(/ 3, (q)q. .

N*1

k-I

By using these curves, however, we can continue and generate surfaces which match control points at their corners. These
surfaces are given by

LI N I
Ar,)= Y O()(),

LI N~h

,=I k.I

4 ,ffl M l

where now we use this notation also for the end condition (i = 1 or L + 1, j = 1 or M + 1, k = 1 or N + 1) rather than

the specifications in the original statement of the multisurface transformation. The multisurface transformations are now
written as
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L

= X + Ea,( )A(, ) ',-
-=2

M
v(,,)= ,0x ,, + Z,()B( .i ) + I3M,('7)X(c,'7M,),

( ,)= (t)x( , ,,) + (N)Ck(C,17) + _YN+(0X(,'7,(N).
k=2

,.,o , z .c A,, B, JL Ck iL, the construttioii of he multisurface transioinition, we get a transformation
that is solely determined by the control points. It is called the tensor product transformation and is given by

L+ I MI N,1lWr,)= Z Z Z , /,rl%;q,
-

1 
I=1

This determines the volume grid for the control points. By inserting it into the the multisurface constructs just given, we get

U(C,7,() = W(Cr,() + ()[X( ,,rC) - A,(,()J+aL+,()[X(L,7,) - A+l(rI

V(C=,() T(C,r7,C) + 3,(')[X( ,Th,,)-B,(,()] + 03M,(r7)[X(C,'7 ,() -Bm ,(C,0)

w(,q,)= T( ,q,() + -,(C)[X( ,0,C,) - C,(, )] + -yNl(()[X( ,7,(N) -CN ,,)].

This form is particularly instructive since we can now explicitly view the issue of boundary conformity in each direction as
being controlled by an adjustment term for each face of a cube. That adjustment represents the deviation from a pure control
point representation to one of an exact boundary specification.

In a similar spirit, we wish to examine the tensor product of any two of the constructs with the given adjustment terms.
To avoid repetitive manipulation, the tensor product UV will be expanded and will set the pattern for UW and VW. The
expansion proceeds by first applying U to V instead of X whereby UV becomes

T( , '.() + o,( ) {V( ,. r,() - A('7,()} + a,,()[V( ,r?,0 - A,, 7(,()1.

With some algebraic manipulation and relabeling of control point entities, we have

UV = T(.q,() + 1({)3(,){X({.i/,,) - c.,(()} + Q,({),M.() {X(.,,7M,() - cM.M+,()}

+aL.(W 7)((G~1,0- cLI (O} + ckL+l(W)fM,(?){XL,77.-0 -

which, as in the case of boundary faces, explicitly separates out the boundary edge blending terms relative to the pure control
point dependency represented by the tensor product T. Those edges are the cube edges in ( that are transverse to the tensor
product in and r represented by U and V as UV.

By applying the established pattern to UW and VW we can evaluate the Boolean sum

U + V D W = U + V + W - UV - UW - VW + UVW,

which reduces to a tensor product core represented by T along with a simple adjustment term for each face or edge of the
grid block. Each adjustment term appears as a blending function times the difference between the specified boundary part
and the corresponding control point representation for the same part. When the part is an edge in one variable, the blending
function is the product of the closest surface coefficients in the remaining two variables. When the part is a face in two
variables, the blending function is just the coefficient for that face in the expansion for the remaining variable.

When the adjustment terms corresponding to a combination of edges and faces is dropped, the effect is a dependency
only upon control points for those corresponding parts of the boundary. The practical implication is that any combination
of specified and free formable boundaries can be employed. This is in sharp contrast to traditional transfinite methods.

One final observation is evident from the surface weighted format employed in our discussion of the control point formu-
lation. It is simply that the weighting functions a,,/, and - could have been chosen arbitrarily rather than in the careful
way done here. That care comes from the multisurface construct which amounted to the interpolation being applied to the
tangent vectors for our curve and, accordingly, accounting for curvature control in a direct manner. The common Bfzier and
B-Spline methods, by contrast, only have a convex hull property. This is essentially a much weaker form of curvature control.
Nonetheless, we can also use such methods in the control pnint form. To use the Bzier functions (Bernstein Polynomials),
we need only set

W ='( - , i ) (L + I - i)!i!'

and 0 < ! 5 1. Similar expressions would result for 0, and -. In continuation, Lagrangian interpolation can be applied, or
some mix of various interpolation and approximation types can be used for the distinct directions represented by a,, j3, or
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Figure 3: Control Function, for Two-Boundary Technique

Figure 4: CPF Sparse/Resultant Grid

5 INTERACTIVE GRID GENERATION

As it has been previously stated, algebraic grid generation techniques are computationally efficient. They are, therefore.
ideally suited for an interactive environment. The two-boundary technique [19] and the CPF [18.21]technique have been cast
in this environment for two-dimensional and quasi three-dimensional applications. In the two-boundary technique, displays
and control functions (Fig. 3) are interactively created and the grid and grid characteristics are computed in sequence and
visually inspected.

In the case of the CPF approach, a nominal grid is displayed and a sparse control net is bold-faced and superimposed onto
the nominal grid (Fig. 4). Using an interactive device (mouse and cursor) a particular point in the sparse net is identified and
moved to another position. In sequence, a new primary grid is computed and displayed. The creation of control functions in
the interactive two-boundary technique and the movement of control points in the CPF technique can be performed in real
time using a state of the art workstation such as the IRIS 3030. That is, a response to input is computed and displayed
as fast as the user can change the input. As workstations become faster and frame buffers[21J connected to supercomputers
become available, the entire interacti% 2 grid generation process will likely be in real time.

6 APPLICATIONS

The generation of structured grids about three-dimensional configurations such as airplanes or submarines requires several
planning and constractio tstepsj22j. We assume that there is some original definition of the configuration, such as component
cross sections or patch data base[23]. Given the configuration, the first step is planning the topology, which includes the
number, location and connectivity of grid blocks. The second step is the determination of a suitable grid on the surface of
the configuration. The third step is the construction of intermediate and far field surface grids that correspond to block
faces. The fourth step is the interior grid generation for the blocks.

The tools of algebraic grid generation are techniques as described above and software designed to apply the techniques in a
specific setting. The terminology specific is used to indicate that the software can be applied to a particular configuration
or class of configurations without changing the source code. There is general software for grid generation, for instsne,
the EAGLE code[24). The EAGLE code authored by Joe Thompson et. al. encompasses both transfinite interpolation
and differential methods [25]. Boundary definition is interpolated to the interior of blocks using Lagrangian interpolation
functions, and the resulting algebraic grid can be smoothed using differential methods. It is the authors' conjecture, however,
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Figure 8: Submarine Configuration
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Figure 9: Wing-Fuselage Grid Surfaces

to generate a grid en the four blocks as seen in Figure 9 after a surface grid has been obtained. Reference 22 provides details
on this grid generation.

H-type topology is more suitable for grids about fighter aircraft configurations with lifting surfaces that have sharp leading
and trailing edges. It is also desirable to concentrate grid points about the edges. Eriksson [Ill has proposed a dual-block
topology for fighter airplanes with highly-swept cranked wings. After generating the surface grid, custom software, based
on transfinite interpolation and Lagrangian interpolation functions, has been written by Eriksson for the configuration in
Figure 6. Grid surfaces about this configuration are shown in Figure 10. More information about the grid generation and
incompressible flow about the configuration can be found in References 11 and 26. The same topology has been been applied
by Smith and Everton in an interactive environment to a modified F- 18 configuration. In addition to Lagrangian interpolation
with exponential controls, intermediate and far field boundaries are determined interactively. Figure 11 shows grid surfaces
about the F-18 configuration, and more detail can be found in Reference 27.

Figure 10: Grid Surfaces About a Cranked-Wing Configuration
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Figure 11: Grid Surfaces About a Modified F-18 Configuration

Figure 12: Grid Surfaces About A Submarine Configuration

The last application is grid generation about submarines. This application is similar to the transport airplane configuration
where the hull corresponds to the fuselage. and the sail corresponds to a shortened wing. In addition, there are sail planes
and stern components in a submarine configuration. Abolhassani and Smith have proposed a tapology for submarine
configurations[28' and a sample grid is shown in Figure 12.

7 CONCLUSIONS

Algebraic grid generation Is a very powerful and a flexible way of discretizing flow field domains. The concept of forming
a boolean suni of tinivariate interpoations is the basic methodology underlying algebraic grid generation methods. Either
structured grids or unstructured grids can be generated with algebraic methods. Algebraic techniques work well in conjunction
with interactive computer graphics. The CPF method, in particular, is highly flexible and suitable for an interactive
environment. Three-dimensional applications of algebraic grid generation require several steps, but algebraic techniques
are capable of producing discretizations of virtually any domain, givctn enough blocks. The problem that arises and merits
consideration is the trade-off for using many structured blocks, a single unstructured representation, or a combination of
structured and unstructured blocks.
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RESUME

Cet article d~crit les m~thodes utilis~es A aerospatlale Division Engins Tactiques pour calculer
numdriquement 'a~rodynamique des missiles dans un cadre industriel. L'accent est mis principalement sur les
probl~mes de liaison entre g6omdtrie et maillage. Apr~ts quciqucs consid6rations sur la Conception Assist~e par
Ordinateur (CAO) et son emploi dans une procedure de maillage, deux chaines de calcul sont pr6sentdes. La
premiire, bas46e sur le principe de la marche en espace, est destin~e aux calculs supersoniqt1bs et la seconde
propose une approche multidomaine pour les calculs subsoniques et transsoniques. Des exemples de maillage et
des rdsultats dle calcul pour diverses configurations sont produits pour illustrer les deux procdures.

ABSTRACT

This paper describes the methods which are used at aerospatlale Tactical Missiles Division in order to
calculate missile aerodynamics numerically in an industrial way. The problems in linking geometry and mesh are
stressed. After a few comments about Computer Aided Design (CAD) and its use in a mesh generation scheme, two
procedures are presented :the first one, based on the space marching principle, is designed for supersonic flows and
the second one proposes a multizonal approach for transonic and subsonic flows. Mesh examples and flow results
are gi-.en for different types of configurations in order to illustrate the two procedures.

1 IN;TRODUCTION

L'adrodynamique des missiles tactiques est fortement tridimensionnelle et essentiellement non lin~aire : la
g~om~trie d'un missile 6tant tr~s ramass6e autour de son -'xe longitudinal, il se produit de fortes interactions entre
les diffdrents 6ldments, et des ddcollements importants et de nombreuses ondes de choc peuvent apparaltre
(R~f~rence 1). De tels i&oulements sont rest~s longtemps hors de port~e des m~thodes num~riques si bien qu'eles
so-nt apparues plus tardivement chez les missiliers que chez les avionneurs. En outre, comrne les formes des missiles
sont rest~es simples tr~s longtenips (axisym~triques et cruciformes) et leur structure restde rustique (peu
d'optimisation), les m~thodes semi-empiriques alli6es aux essais en soufflerie se soot avdrdes suffisantes pour
r~pondre aux besoins des projets.

La n6cessit6 de m~thodes numdriques nest vraiment apparue chez les missiliers qu'au debut de la
di~cennie pour prddire Fadrodynamique globale des formes compliqu6cs (missiles adrobies, par exemple) et
Ila~rodynamique r~partie, inaccessibles par les m~thodes semi-empiriques. Pour des consid~rations de cofit de
calcul, ce sont d'abord des m6thodes de singularit6s qui ont 6t utilisdes, mais la tr~s forte non-linedrit6 de
I'a~rodynamiquje des missiles limite par trop leur domaine de validitd. C'est gr~ce d'une part aux progr~s accomplis
dlans Ie domaine des super-ordinateurs, et d'autre part au dtdveloppement de Ia technique d'accdldration de
convergence par marche en espace que les codes Euler sont devenus accessibles industriellement :ainsi Ia
procedure ddvelopp&e autour du code Euler FLUXC ddcrite au paragraphe 3 nous permet actuellement d'intervenir
rapidement A tous les stades du projet pour le domaine supersonique. En ce qui concerne Ic subsonique et Ie
transsonique, une procedure rnultidomaine r~pondant aux mimes exigences de performance est en phase finale de
dtiveloppement. Elle fait l'objet du paragraphe 4.

2 CAO ET CALCUL AERODYNAMIQUE DES MISSILS

La gdomdtrie des missiles s'est dnorm~ment compliqu~e depuis quelques ann~es, principalement pour des
considdrations de propulsion (entrees d'air sur I'ASMP ou l'ANS: figure 1) et de furtivitd (lissage des formes). Dans le
m~me temps, la pr~cision des m~thodes numdriques de dynamique des fluides s'est suffisamment accrue pour
permettre la prise en compte de d~tails de gdomdtrie ignords jusqu'alors (goutti~res, capots ... ). Cette double
6volution a rendu indispensable l'emploi de syst~mes de CAO non seulement pour assurer Ia d~finition rigoureuse
de la g~om~trie, mais aussi pour faciliter son maillage pour des calculs numdriques. Aussi, l'a~onumdricien se doit
aujourd'hui de poss6der une comps~tence CAO.



En effet, la plupart des gdom~tries que nous avons A calculer sont d~finies et modifides par des sp~cialistes de
la CAO et sont destindes A 6tre exploitdes dans les domaines les plus divers. Elles ne sont donc soumnisos A aucun
crit~re restrictif d'6laboration qui pourrait nous en faciliter le maillago. Par exemple, los diffdrents 616ments d'une
configuration sont le plus souvent juxtapos6s sans souci de repr6sentation des intersections, certainos surfaces de
ddfinition peuvent sc superposor en tout ou partie et m~me &trc 16g~rment disjointos. Cc sont autant
d'imperfections quo nous devons en premier lieu 61iminer. D'autre part, nous devons structurer la configuration
mauller, c'est A dire construire les fronti~res des domaines de calcul, car en g~n~ral cules ne coincident pas avec los
fronti~res des surfaces de dAfznition gdomdtrique. Enfin, nous avons tr~ts souvent A modifier la configuration A traitor,
en particiflior pour des s~ries do calculs param~triques doe positionnoment et dimensionnoment do surfaces
portantes or en, ore pour lestimation d'efficacit~s de gouvornes.

T cIs ces 616ments nous ont montr6 la n6cessit6 de disposer d'un logiciel do g~om~trie porformant, m~me si
nous n assurons pas la tAche do conception dans son int~gralit6. Plut6t quo do d~velopper un logiciel aux
fonctionnalitds CAD, nous avons pr~f~r6 choisir un syst~me d61 A existant et 6prouv6 et l'intorfacer en fonction do
nos t~ches sp~cifiquos do mani~re A no pas transformer l'a~rodynamicien en sp~cialiste CAO malgrd lui. Le logiciel
ICEM2 do Control Data Corporation sur station do travail IRIS do Silicon Graphics nous a paru rdpondro a cette
exigence :d'abord parce qluil ost extr~mement convivial et facile d'emploi pour des utilisateurs qui no sont
qu'occasionnels et qui on ont un emploi marginal, et ensuite parco qu'il int~gre un langage do programmation
graphiqi~e tr~s puissant (Graphics Programming Language) permottant d'accoder diroctoment la base do donndos
et d'utiliser Ia plupart des fonctionnalit~s mathdmatiques du syst~me. L'dcriture do modules on GPL nous a pormnis
d'automatiser le traitement des g~om~tries los plus complexes quo nous ayons eues A calculer,comme nous le
vorrons par la suite.

Parmi los nombreuses fonctionnalit~s et Ia souplesso doemploi offertes par cetto solution CAO, il faut
souligner Ia possibilitd do traitor los bases do donndes g~omdtriques provenant des autres syst~mes par
l'intermodiaire do Ia base do uann~es normalisde SET (Syst~me d'Echange et do Transfert) via une interface do
traduction. Do cetto mani~re, nous pouvons traitor los fichiers g6om~triques provonant do tous los logiciels do CAD
(Catia, Cadds, A6rolis... ), pourvu qu'ils soient interfaces avec SET.

3 PROCEDURE POUR LA MARCHE EN ESPACE

Lorsque 1'6coulement ost supersonique dans une direction donnee, los 6quations d Euler sont hyporboliquos
dans cette direction et autorisent une rdsolution doe proche en proche. Cette m~thode dite do marcho on espace
s'applique naturellement aux 6quations d'Euler stationnaires mais aussi aux 6quations d'Euler instationnairos. Le
maillage est alors g6n~raloment constitud d'une succession do coupes planes (2D) orthogonales A Ia direction de la
marche.

La proc6dure de maillage quo nous avons d6velo)ppdo s'articulo en deux phases bien distinctcs (voir
l'organigrammo do Ia chaine do calcul en figure 2):
- si Ia g~om6*rie ost analytique (par oxemple un missile axisym~trique et cruciforme), elle est g~ndree A laide du
module g~om~trique d'un logiciol intoractif appel~s PRECET, et maill~e A l'aide du module do maillago du m~me
logiciol qui est organis6 autour d'un mailleur bidimensionnel elliptique d~riv6 do GRAPE (R~f6rence 2);
- si la g~omnttrie ost une base do donn~es CAD (par exemplo un missile a~robie), elle est d'abord conditionnde au
sein du syst4tme do CAD par ex6cution d'une chaine do programmes GPL intoractifs et batch. Le maillago est
onsuito r~talisk A l'aide du module do maillage du logiciol PRECET.

3.1 Definition de la g~omntrie
De6finition analytique
Le prdprocesseur pour le calcul des missiles PRECET (PREprocesseur pour Calcul d'Engins Tactiques).

programme graphique interactif 6crit en FORTRAN, possode un module qui permet do construire trLs rapidemont
une g~om6trie simple (analytique) en combinant un certain nombre d'616ments (ogives, cylindres, surfaces
portantos avec ou sans 6paisseur, r~treints ... ) d~finis doe faqon param6trique. Ceci s'applique tr~s faciloment aux
missiles do forme classique tel quo Y' ASTER (Figure 6).

Difixnitiort via la CAO
Comme ii a &6~ dit pr&&Idemment, la configuration A mailler nest pas d~finie sous CAO sp~cialement A notro

intention. Ainsi, mime si Ia gt~omdtrie est "propre", on no pout g~ntdralement pas utiliser telles quelles los surfaces
de d~finition car clles no correspondent pas A cellos que I'on souhaite mailler (Figures 3a et 3b). La plupart du temps
elles ne pr~sentent pas do fronti~re commune m~me en les regroupant. La premi~re dtape consiste donc A ddfinir
les suifaces A mauller avant mnme do vouloir r~cup~rer la d~finition g6omdtriquo. Or, dans le cadre do la marche en
espace osi il s'agit do mauller l'espace par urie succession de plans perpendiculaires A laxe de Ia configuration, los
surfaces A mailler pr~sentent deux fronti~res perpendiculaires A cot axe. Nous avons donc choisi do tirer profit do
cette caractdristique en mod~Iisant la g~omntrie par une sdrie de coupes dont certaines correspondent aux
fronti~es des surfaces A mailler. Le probIL~me de structuration do la gdom~trie s'en trouve ainsi consid~rablement
simplifid.



Le traitement de la g~om6trie se d~roule comme suit:
- red~finition de la configuration par une s~rie de coupes perpendiculaires son axe directeur : l'utilisateur

doit demander un nombre suffisant dle coupes pour avoir une d~finition prdcise de la g~omdtrie dans sa direction
longitudinale et doit sp6cifier los positions des coupes particuli~res correspondant aux fronti~res des surfaces A
mauller. Ces coupes limites sont choisies g~ndralement pour marquer un changement de topologie de la
configuration ou pour autor-isor de part et d'autre de celles-ci des maillages dle types diff~rents ou encore pour
marquer une discontinuitd longitudinale. Line fois les plans de coupes d~finis, un programnme calcule les
intersections avec los surfaces de d~finition (Figure 3c);.

- nettoyage' et pr6paration des coupes : l'utilisateur spdcifie s'il veut traiter la configuration enti~re, la moiti6
ou encore le quart, et le programme modifie les entit~s en const~quence (suppression, coupure ou extension) en
6liminant au passage toutes los entit~s parasites g~ndrdes lors des coupes (en g~ndral des splines cubiques). 11
visualise par des points la trace sur les coupes des fronti~res des surfaces de ddfinition;

-choix des fronti~res des surfaces A mauller : l'utilisateur doit d'abord d~signer les coupes d6finissant les
fronti~res transversales (limites des blocs), puis pour chacun des blocs ainsi d~finis designer les fronti~res
longitudinales (Figure 3d). Pour ce faire ii lui suffit de sdlectionner avec la souris de sa station de travail certains des
points visualis46s lors de l'4tape pr&c6donte. Le choix des fronti~res longitudinales correspond le plus souvent A uno
discontinuit6 qui doit 6tre absolument respect~e lors du maillage final mais peut 6tre aussi une simple ligne de
maillage quo l'utilisateur veut imposer pour, par exemple, pouvoir y effectuer un raffinement local. La qualit6 du
maillage final d~pend en majeure partie de cette dtape;

-enregistrement dle la g~omdtrie des surfaces A mauller : muni des informations que~lutilisateur lui a
donn~es prdc~demment, lo programme ordlonne automatiquement les entitds do chacune des coupes, y r~partit un
nombre de points fix6 par un crit~re de densitd donnd et les stocke de mani~re ordonnde. On dispose ainsi A liIssue
do cette 6tape d'un fichier contenant les surfaces A mailler de la configuration sous la forme d'une grille structur~e
de points de ddfinition. Cette grille sera interpol~e par splines cubiques lors du maillage (Figure 3e). En g~n~ral,
l'interpolation est suffisamment prdcise pour pouvoir se contenter des points paroi obtenus de cette faqon.
Cepondlant, l'utilisateur dispose d'un programme lui permettant en dernier lieu de projoter automatiquemont tous
les points paroi sur les surfaces gdomdtriques initiales. Ainsi, la g~om~trie est rigourousement respect~e, mnme si
elle a 6 mailido A partir d'une repr6sentation approchde.

Dans le cas ou une coupe a donnd lieu A plusieurs contours disjoints, l'utilisateur doit les relier les uns aux
autres de mani~re A n'en obtenir qu'un soul, comme le r~clame Ie mailleur. Ceci revient A cr~er des surfaces A
mailler artificielles dites do "transparence" qui seront travers~es par lcoulement lors du calcul comme si elles
n'existaiont pas (Figure 4). 11 faut procder de m~me lorsque Ia configuration prdsente une partie 6moussde et donc
un 6coulement localoment subsonique : pour quo le premier plan du domaine qui Ia contient soit suporsonique, il est
n~cessaire do l'avancor et pour cc faire do construire une surface artificielle qui reproduiso la topologie do 1'6li6ment.

3.2 G~n&ation du maillage
Prkprocesseur
Le pr~processeur PRECET pormot do d~finir un maillago tridlimensionnel A partir doe maillages

bidimensionnols par plans. La g~om~trie est ddfinie analytiquement do facon interne ou bien A partir d'un fichier do
points r6sultants do Ia d~marche CAO d6crite ci avant. Lutilisateur d6finit d'abord los abscisses limites des
domaines doe calcul ainsi quo le nombre et la rdpartition des plans do calcul. Ensuite, pour chaque domaine, il d~finit
le maillage transversal en fixant quolques parametres (nombres do points radiaux et orthoradiaux... ) qui seront
valables pour tout le domaine; il pout visualiser le maillage resultant dlans n'importe quel plan do calcul. La fronti~re
ext~rieuro qui doit englober le choc frontal ost fix~e do mani~re empirique en fonction do l'doulement amont.
PRECET &rit des fichiers de typo maillage, des fichiers do donn6es pour los calculs FLU3X et un fichier do cartes do
contr6le quo l'utilisatour na plus qu'A soumottro au super-ordinateur.

Mailleur
La m~thode do gdn~ration de maillage repose sur la rdsolution des 6quations do Poisson. Los fonctions do

contr6le sont d~terrnin~es automatiquement, solon le sch~ma mis au point par Steger et Sorenson (Rif~ence 2), par
sp~cification de l'espacement et do l'orientation des mailles au voisinago des Ironti~res. Cette m~thode a dt choisie
pour sa capacitd A traitor des domaines do formes vari~es tout en produisant des lignos do coordonn~es assez lisses.
Les 6quations, uno fois discr~tis~os, sont rdsolues par un algorithme SLOR appliqud d'abord sur une grille grossi~ro,
oiz ]'on no prend qu'un point sur trois, puis sur la grille compl~te. Do cette fa~on le temps do calcul est divisd par 5, en
moyenne. Egalemnent dans le but d'amdlioror les performances on a ajout6 une option qui op~re A partir d'une
solution calculde pour le plan pr&4~dent dans le cas oiz los deux domaines, sont g~omdtriquement tr&s prochos. Le
gain obtonu so situe entre 3 et 10.

En g~ndral, la configuration ktudi~e pr~sento un plan vertical do sym~trie, de sorte quo le domaine A mailler
est topologiquement 6quivalent A un rectangle dont los quatro fronti~res sont : la fronti~re intdrieure constitude
d'une demi section du missile, la fronti~re extdrieure englobant la trace du choc et los traces du plan do sym~trie a
l'intrados et A 1lextrados du missile. Pour los configurations qui nadmettent pas do plan do sym~trie, le domaine est
topologiquement dquivalent A une couronne et on choisit l'option "maillago on 0".

Le programme a W adaptd pour prendre en compte automatiquoment los points anguloux (extr~n' Ad do
voilure ... ) et los points confondus (apex d'une aile en fl~che). Los donn~es A fournir sont r~duites au minimum :
nombre do points do maillage dans los deux directions, coordonn~es (x,y) des nceuds sur los frontibres intdrieures et
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ext~rieures et indication de l'espacement ddsird au voisinage des fronti~res. Implicitement, le programme essaye de
gdndrer des maillos orthogonalos aux fronti~res. Sur les fronti~res latdrales (plan de sym~trie) on peut au choix
imposer les noeuds (conditions de Dirichiet) ou. laisser les points "flotter" (conditions de Neumann) pour satisfaire
une condition d'orthogonalit6.

On trouvera en figure 5 un exemple de maillage transversal pour le missile a6robie ASMP.

3-3 Calculs a~rodynamiques: code FLUXC

FLU3C est un programme de rdsolution des 6quations d'Euler tridimensionnelles instationnaires sous
forme conservative qui r~sulto d'une coopdration 6troite entre l'ONERA et aerospatlale (R~f~ronce 3). Le sch~ma
de type volumes finis est oxplicite et donc: soumis A un critt'-re do CFL en temps. La formulation d~centr&e du calcul
des flux, suivant l'approche de Van Leer, assure A la m~thode uno grande robustesse. La pr6cision d'ordre deux en
temps et en espace est assur~e par l'utilisation d'un schdma prddictour-correcteur dle type MUSCL. Un limiteur de
pontes, qui agit uniquement dans los r~gions do fort gradients, prdviont los oscillations en r~duisant l'ordre de
pr~cision spatiale pros des discontinuit~s. Pour la recherche do solutions stationnaires, deux m6thodes
d'acc~ldration de convergence sont utilis~es :

- la m~thode do pas do temps local; chaque point 6volue avec: sa propre 6&helle de temps jusqu'A convergence,
- la m6thode do pseudo marcho en ospace; lorsquo la composante do la vitesso suivant une direction privil~gi~e est

suporsonique dans tout lo domaine de calcul, on fait converger en temps, l'un apr~s l'autro, chaqxe plan de calcul
orthogonal A cette direction en utilisant uniquement los variables situ~es A lamont. Cette procddure minimise le
nombre d'it~rations n~cessaires ainsi que le volume d'entrdes-sorties.

Lo coI~t de cette mdthode explicite restreint son utilisation dans un cadre industriel aux 6coulements
supersoniques.' Lo calcul d'un missile est en fait constitu6 de plusieurs calculs FLU3C (e dernier plan de calcul N
sert de plan initial pour le calcul du plan N 1). Uno condition n6cessairo ost que los plans d'entr~e et do sortie de
chaque calcul FLU3C soient suporsoniques. Cependant, cela n'interdit pas la prdsence de poches subsoniques
commo c'est le cas dans los calculs -de missiles avec jets latdraux (Rdfdrence 4). Le calcul d'une configuration
r6aliste en 6coulement supersonique avec un maillage comprenant 300 000 points est doenviron 20 mn CPU sur le
CRAY X-MP.

3.4 Exemples
Missile ASTER 30

La figure 6 montre un exemple de maillage pour l'anti-missiles ASTER 30. Le maillage surfacique comprend environ
14 000 nceuds pour une demi-configuration et 400 000 nceuds au total. La g~om~trie do ce missile classique est
d~finie de fa~on analytique avec PRECET et tient compte du profil des voiluros, ce qui est indispensable pour Ia
bonne pr~diction des moments do charni~re (R&f6rence 5). La figure 6 montro 6galement une r~partition do
nombre do Mach paridtaux pour un nombre do Mach infini do 2,6 et une incidence do 10 degrds, obtonus avec le
code FLUXC. Los chocs et d6tentes lids aux surfaces portantes sont clairement visibles. Le programme FLU3C a &
utilis6 intonsivomont dans le cadre du projet do missile ASTER.

Missile ANS
L' ANS ost un projot do missile a6robie 6tudid conjointement avec MBB pour succdder A la famille do missiles anti-
navires EXOCET. 11 ost dquipd d'un stato-rdactour avec 4 entr~es d'air do rdvolution. Le maillage surfacique prdsentd
figure 7 comprend environ 16 000 nceuds pour une demi-con figuration. La g~omdtrie a 6t d~finie sous CAO. Le
rdsultat do calcul (coefficients do prossion pari~taux) correspond A Mach 2 et 4 degrds d'incidence. Les entrdes d'air
sont ouvortes et suppos~os en fonctionnoment suporcritique.

Navette HERMES sur lanceur ARIANE 5*
La navette spatiale HERMES sur le lanceur ARIANE 5 est l'une des plus grosses configurations quo nous ayons
trait~es (Figure 8). Elle comprend environ 17 000 nceuds sur la paroi pour une demi -configuration et illustre bien
l'utilisation des surfaces transparentes (jonction des boosters et du corps central). Le nez do la navette est mailld
avcc une singularitd d'axe alors quo le resto do la configuration ost maiIl4 par plan. La figure 8 prdsente des nombres
do Mach pari~taux A Mach 1,5 et 3 degrds d'incidonce.

Avion do transport ATSF *
L'ATSF est un projet d'avion supersonique civil destind A succdder A CONCORDE. La g~omdtrie est plus simple quo
dans los exemples pr&cdents. Le maillage surfacique prdsent6 figure 9 comprend 11 000 nceuds environ. La figure 9
donne dgalement la repartition des nombres do Mach sur la paroi A Mach 2 et 4 degrds d'incidence,

4 PROCEDURE POUR LE MULTIDOMAINE

La procddure marche en espace prdsente certalnes limitations, tant au niveau g~orntrie-maillage qu'au
niveau du calcul. Bien quo des configurations trbs divorses aiont Pu Atro maill~es et calculdes aisdment, olles restent
cependant limitdes en complexitd. De plus, quolle que soit lout topologie, toutes los configurations sont maill~es en
0O-H", alors que certainos parties commo par exemple un bord d'attaque arrondi n~cesslteralent un maillage do
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type "0-C". Cela peut nuire A la bonne repr~sentation g~om6trique de l'6l6ment ou conduire A un nombre de points
de calcul trop 61Mv. En outre, certains contours ne peuvent pas 6tre maillds sans recourir A une simplification de la
g6omdtrie. Enfin, la convergence d'un calcul transsonique sur un tel maillage nest pas assur~e, en particulier au
niveau des raccords entre sous-domaines (non correspondiance des noeuds). Cest pour cette raison qu'il nous est
apparu n~cessaire dc d~velopper une procddure tridimensionnelic g6n6rale. Nous avons choisi une approche
multidomaine sans recouvrement avec possibilit6 de continuit6 des lignes de maillage entre domaines pour deux
raisons:
- le non recouvrement facilite la gestion du multidomaine,
- la continuitd des lignes de maillage facilite le traitement conservatif des raccords.

Cette approche permet en outre, dans sa restriction surfaciqlue, d'obtenir quasi-automatiquement un maillage
rigoureusement jointif pour une mdthode de singularit~s.

4.1 Formes simples

Pour traiter les configurations de forme simple (axisymdtrique, cruciforme), nous avons ddvelopp6 un
pr~processeur FORTRAN appel6 PREMICE (PREprocesseur de Maillage Interactif pour Calcul d'Engins)
perinettant la d~finition et le maillage interactifs dle la g~omdtrie. Celle-ci est d~finie A partir d'une biblioth~que de
formes simples (ogives, troncs de c6nes, ailes de diffdrents types ... ). Le domaine de calcul est d~compos6
automatiquement en blocs topologiques qui sont ensuite r~unis en sous-domaines. Le maillage volumnique est
effectu6 A l'aide du mailleur bidimernsionnel prdsentd dans le paragraphe 3.2 par rotation de plans de maillage
autour de l'axe de la configuration. Les effets tridlimensionnels (tuilage ou encore 6paisseur des ailes) sont obtenus
par d~formation des plans de maillage. Un exemple de maillage multidomaine du missile ASTER cst produit en
figure 10.

4.2 Formes diniies par CAO
Deinition de la g~om~trie
La d~marche adopt~e ici est sensiblement la mime que pour la marche en espace en ce sens qu'elle s'articule

en deux parties distinctes, l'une relative au traitement de la gdomdtrie est effectu~e au sein de ICEM, l'autre
concernant le maillage est effectu~e hors de ICEM. Cependant, le traitement de la g~om~trie requiert cette fois-ci
une connaissance plus poussde du systa~me de CAO, puisque l'a~rodynamicien doit construire lui-m~me les
fronti~res des sous-domaines.

La premicre t~che A accomplir est la d~composition du domaine physique en un certain nombre de sous-
domaines faciles A mauller; la plupart des auteurs pr~conise d'effectuer une partition du domaine en blocsI topologiques de type "616ments finis" (Rdfifences 6 et 7): l'intersection de deux blocs ne doit 6tre constitu6e que
d'un sommet, d'une arkte compl~te ou d'une face complkte. Les blocs obtenus peuvent 6tre facilement maill6s de
faqon structur~e, puis r~unis pour former les sous-domaines de calcul. Cette m~thode permet une gestion logicielle
tr~s simple de la connectique, mais est tr~s contraignante car elle conduit A un grand nombre de blocs dls que le
domaine A mailler dlevient complexe (souvent plus d'une centaine de blocs). L'approche que nous avons choisie est
plus simple pour l'utilisateur Icl domaine physique est directement d6compos6 en sous-domaines de calcul (de
l'ordre d'une dizaine) qui sont choisis en fonction de Ia topologie rencontr~e. Chacune des faces des sous-domaines
est d~coup~e en un ensemble dle fent~res correspondlant en g~n6ral au type de condition limite A y appliquer lors du
calcul, coci de telle mani~re que les sous-domaines de calcul communiquent entre eux par une fen~tre, un bord do
fenktre ou un coin de fen~tre. L'intdr~t de cette approche vient du fait que la structure d'une face de sous-domaine
n'a pas besoin d'Ctre reprodluite sur sa face opposke, ce qui dvite une inflation de blocs. La configuration reste ainsi
tr~s lisible au niveau g~om~trique comme au niveau connectique (Figures lla et 11b).

La d~composition du domaine en sous-domaines de calcul et des faces en fenktres est faite par l'utilisateur
sous CAO et requiert une certaine connaissance des fonctionnalitds du syst~me. L'emploi d'un syst~me dle CAO
s'av~re ici indispensable par comparaison A l'6riture d'un logiciel sp~cifique qui naurait pu en aucun cas offrir la
m~me gamme de fonctionnalit~s.

Une fois effectu&e la construction gdom~trique des arktes des fen~tres, lutilisateur est guid6 dlans sa
d~marche par un programme GPL auquel ii doit donner les renseignements n~cessaires pour que celui-ci retrouve
et enregistre la connectique des sous-domaines et leur g~c.rn6trie. Le ddroulement des opdrations est alors le
suivant :
-ddsignation par l'utilisateur de toutes les fen~tres par selection des entitds g~omdtriques les constituant (Figure

12a). Le programme visualise les fen~tres ainsi d~finies (Figure 12b);
- sur Ia moddlisation par fen~tres, d6signation des faces par sdlection de fcn~tres. Le programme repr~sente
graphiquement les faces ainsi d6finies (Figure 12c0;

-sur la mod~lisation par faces, designation des sous-domaines par s~Iection de faces;
-enregistrement d'un fichier de connectique : la connectique est assur6c par l'interm~liaire des fen~tres ; A chaque

entit6 g~om~trique entrant dans Ia definition d'une fen~tre est associd un 'label" unique. La comparaison de ces
"labels" permet de savoir si deux fenktres sont adjacentes ou pas, et donc de structurer les faces;

- enregistrement d'un fichier g~omdtrique: la g~omdtrie des fen6tres est enregistr~e sous forme de sdries de points
r~partis sur les entit~s constituant leurs ar~tes. En outre, pour chacune des fen~tres paroi, une grille structurde de
points intdrieurs est g~nerde A partir des surfaces de definition et leur rdpartition ivolue en foniction de celle des
arC-tes correspondantes (Figure 13).
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Giniration du maillage
Au sein d'un domaine, il faut assurer la correspondlance des mailles d'une fen~tre A IVautre pour obtenir un

maillage structurd. De m~me, on peut vouloir assurer la continuitd des mailles d'un domaine A l'autre. Pour cela, ii
suffit de d'assurer pour chaque fen~tre l'6galitd des nombres de points sur deux ar~tes opposdes. On obtient ainsi un
syst~me d'6quations lindaires dont la resolution par une m~thode de pivot determine le maillage des ar~tes A partir
de la donnde d'une densitd de points et/ou d'un certain nombre de ces inconnues (le mime procdd~ est utilisd sous
CAO pour fixer les nombres de points du fichier gdomdtrique). Le maillage des faces est obtenu par la rdunion des
maillages des fen~tres. Les points de maillage des fen~tres, de paroi sont interpolds A laide d'une reprdsentation par
carreaux de Coons bicubiques et les autres fen~tres sont maill~es par interpolations transfinies. Le maillage par
fenktre permet de bien respecter les discontinuitds de pentes de la paroi qui sont gi6n~ralement prises comme
limites de fen~tres. Enfin, les domaines sont maill~s par interpolations transfinies A partir des faces. Un exemple de
maillage est pr~sentd sur les figures 14 et 15 A partir de la d~composition multidomaine pr6sent~e sur les figures I.la
et lib.

Comme nous l'avons prdcisd en introduction, cette procedure est encore en d~veloppernent. Ainsi, un certain
nombre de fonctionnalit~s manquent pour linstant:
- une fonction de repartition de points est associde A chaque entitd g~omdtrique pour permettre les raffinements de
maillage, mais cette fonctionnalit6 nest pas encore implantde,

le processeur de maillage est encore rudimentaire,
*nous ne disposons pour l'instant d'aucune technique d'opti misation /adaptation de maillage: aussi nuus nous

orientons vers l'implantation d'un optimiseur basd sur la minimisation de la fonctionnelle prdsent~e r6cemment par
0. P. Jacquotte (Rdfdrence 8).

Nous envisageons 6galement d'6tudier une procddure d'aide A la d~composition en blocs de la gdomdtrie
pour la gdn~ration des sous-domaines.

4.3 Exemples

Pour illustrer la procedure multidomaine, deux exemples ont dtd dvoquds au cours du chapitre prdc~dent. Ils
sont d~taill~s dans ce paragraphe:

- missile classique :Ia figure 10 prdsente le maillage multidomainedu missile ASTER ailes minces. Trois sous-
domaines de calcul d~finissent le domaine total : un A l'extrados, un A l'intrados et un entre les surfaces portantes. Ils
ont 6t g~ndrds avec PREMICE par rotation autour de laxe de symdtrie du plan de maillage visualisd sur la figure
(dimensions: 127x04). Le maillage total comprend 150 000 nceuds;

- missile adrobie: la figure lla pr~sente la d~composition multidomaine d'un missile g~nerique adrobie
semblable A celui de la figure 3a. Le domaine de calcul a dtd d~coupd en 15 sous-domaines. La figure llb donne une
vue iclat~e des 9 sous-domaines int~rieurs dont 6 seulement poss~dent une fen~tre de type paroi. Le maillage du
sous-domaine n* 4 (extrados du fuselage arri~re, ddrive et empennage) est visualis6 en figure 14 (dimensions
17x21x69). 11 s'agit IA d'un maillage brut nayant encore fait l'objet d'aucune optimisation et gdndrd directement A
partir des donn~es issues de la CAO. Le maillage surfacique (15 000 noeuds) et quelques plans de maillage sont
prdsent~s en figure 15.

5 CONCLUSION

Deux procedures de traitement de g~om~tries et de maillage pour les calculs adrodynamiques ont 6t6
d~crites. La premi~bre est orient~e vers les calculs Euler avec une technique de marche en espace et privil~gie une
direction particuli~re pour d6finir la gdomdtrie et mailler l'espace de calcul. Elie est trbs largement utilis&e A
aierospatlal. Division Engins Tactiques, dans un contexte industriel et son application A des gcdomdtries aussi
diverses que celles des missiles a~robies ASMP et ANS, de la navette spatiale HERMES et de lavion de transport
supersonique ATSF prouve l'int6rkt de cette approche. La seconde est une gdndralisation de la premiere avec une
orientation cilculs multidomaines. Les deux proc~dures sont intimement li~es A l'utilisation par Ila~ronumdricicn
d'un systime CAO interactif, auquel nous avons ajout6 des modules, pour d~finir les domaines de calcul et
rdcup~rer la g~om~trie sous une forme qui permette de gdndrer un maillage de mani~re simple et interactive. Le
temps n6cessaire pour traiter une g~om~trie complexe et lancer le premier calcul est de un A deux jours pour la
premi~re procedure. Le temps pr~vu pour la seconde, qui est en cours d'ach~vement, est d'environ une semaine.
Ceci est rendu possible par la minimisation du nombre de structures a g~rer par l'utilisateur et l'automatisation des
principales tiches.

:Calculs effectu~s par M. Mortel de la Division Spatiale dans le cadre du programme ARIANE 5 A la Division
Engins Tactiques avec la proc~dure d~crlte ici.

*0:Calculs effectu~s par M. Carlier de la Division Avions A la Division Engins Tactiques avec la procedure d~crite ici.
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ASMP Missile Air-Sol Moyenne Port6c

ANS Missile Anti-Navire Supersonique

Fig. 1 Missiles a~robies aerospatiale

GiOTRiF 'AO/E P -'-RPOESER-t

Fig.2 Cain decalcl pur a pOcEdMUrEdearhenspc



Fig. 3a Missile g~n6rique a~robie

IIFig. 3b G~omdtrie surfacique CAO de la partie arrnbre
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Fig. 3c Definition minimale par coupes avant "net toyage"

Fig. 3d Fronti~res Iongi tudinales et transversal es des surfaces A mai 11er

Fig. 3e :Trace surfacique du maillage



Fig. 4 Exemples de surfaces transparentes

Fig. 5 Exemple de rraillage transversal - Missile ASMP
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aerospatlale

Maillage et r~sultat de calcul (nombre Mach) surfaciques
-Missile ASTER 30 (Mach 2,6 - incidence 10 0)

Fig. 6

a kerospoale

Maillage et r~sultat de calcul (coetticient de pression) surfaciques
-Missile ANS (Mach 2 - incidence 4 0) -

Fig. 7
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Maillage et r~sultat d calcul (nombre Mach) surfaciques
Ariane 5 + Navette Hermes (Mach 1,5 - incidence 3 0

Fig. 8

~aerospatiale

Maillage et r~sultat de calcul (nombre Mach) surfaciques
....io de transport supersonique (Mach 2 - incidence 4 0

Fig. 9
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Fig 10 Maillage multidomaine d'un missile conventionnel - Missile ASTER

7 EETYmc OISNTfV fINN
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Fig. I Ia Decomposition multidlomaine d'un missile non conventionnel - Missile g~n6rique a6robie

.. 7

83

9

Fig. 1 lb Vue klat~e des sous-domaines internes



Fig. 12a entit~s g~om6triques

Fig. 12b entit~s g~om6triques et sous-faces

Fig. 12c sous-faces et faces

Fig. 13 entit~s g6om~triques et points de d6finition surfacitque



fig 14 \Iallge d tin domaine c calcul - Missile g6nL~rique a6robic

Fig I Suirfaces du imailago multidornaine iomplet - Missile generiqueIIerobie
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ABSTRACT

This paper deals with building grids for flow computation in turbomachine applications. H,I,C, and
0 types are discussed for 2D or 3D, inviscid or viscous flow cases. The given examples concern 3D Euler
application on a fan with part-span damper and splitter, 2D Navier-Stokes on turbine and compressor tran-
sonic cascades and 30 Navier-Stokes on a transonic fan

I - INTRODUCTION

In recent years air flow computation in turbomachines have permitted more efficient fan and turbi-
ne designs [1]. In addition these computations reduce the number of time and cost consuming tests. All
modern numerical codes use a grid as a space discretisation.

Grid generation is a primary part of obtaining numerical solutions to the two or three-dimensional
inviscid or viscous flow inside turbomachinery. Computation of three-dimensional viscous flow inside
cascade of airfoils with arbitrary endwalls or complex geometries such as dampers requires many addi-
tional constraints for grid generation. For the current study, only structured grids without any solu-
tion adaptation will be discussed. Both unstructured grids and grid adaptation provide additional ways
to reduce overall grid size for a given physical problem, their application to three-dimensional vis-
cous flows in a turbomachinery needs further development.

2 - PARTICULARITIES OF TURBOMACHINE MESH

Most of flow computation methods in turbomachine use cylindrical coordinates (R, radial coordi-
nate ; 0 , tangential coordinate Z axial coordinate). Then the mesh is drawn on an axisymetric
sheet for the two-dimensional case ( 0 ; m, meridional coordinate). For the classical three-dimen-
sional case, mesh is build by stacking several two-dimensional meshes. For complex geometries (such as
non axisymetric hub, non axisymetric dampers, etc.) more efficient mesh generators are needed. Rotors
or stators have many airfoils. In order to save computation time and simplify the topology the mesh
is limited to one airfoil channel and a periodicity condition is used in e-direction (fig.1). Ups-
tream and downst'eam flows (Z - direction) are assumed to have axisymetric field for some aerodynamic
parameters but with non-zero radial and axial gradients. This is why upstream and downstream bounda-
ries are axisymetric surfaces and very often they are a plane normal to the turbomachine rotation axis.
This choice makes easier the treatment of periodicity conditions. Conditions on hub and tip surfaces
are classical wall conditions. Last characteristics of turbomachine airfoils are the high level of
camber, specially for turbine blades, or the high stagger, specially for transonic fans.

The suitable mesh qualities for flow computation in turbomachine are :
- good regularity
- good orthogonality
- easy introduction of periodicity condition

3 - DISCUSSION ABOUT MESH TYPES

An H-grid (fig.2) has been used very widely for inviscid and viscous flow computations. Although
H-grid has very good far field properties and is easy to apply to periodicity condition, the grid
tends to skew significantly when applied to transonic fans and highly cambered turbine blades. With
thp recent improvement in grid generation technique (either elliptic or algebraic), most leading edge
and trailing edge problems can be avoided. However, the overall skewness of the grid remains still too
high for three-dimensional viscous flow computation. For the three-dimensional Euler equations, using
a good stability solver such as Lax-Wendroff-Ni finite volumes scheme, H-grid can be performed on
transonic fans with splitter and dampers (see chapter 4).

In viscous flow computation, near the endwall region, a good quality grid is necessary in the mid-
dle of passage as well as near the blade. A single 0-grid or C-grid (fig.2) provides good grid reso-
lution around the blade and in the wake (C-grid). But the single 0-grii or C-grid becomes very skewed
at the inflow and periodic boundaries due to the constraint of spacial periodicity
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An I-grid which can be treated as a generalized H-grid, provides reasonably good grid resolution
near the blade as well as the far field. With the I-grid spatial periodicity of the grid at the perio-
dicity surface is no more forced and the physical periodicity condition is handled inside the code by
higher order interpolation of variables, good orthogonality of the grid can be maintained near the
blade surface and at periodic surfaces with most elliptic or algebraic grid generation. Although a
single I-grid can be used efficiently for most regular blade row description, significant portion of
grids can be saved by wrapping an O-grid or C-grid inside the I-grid when large number of grids are
required near the blade for boundary layer resolution.

For two-dimensional flow calculation, different physical assuptions can be also applied on the
domain surrouding the profile, a full Reynolds-averaged Navier-Stokes equation can be integrated while
inviscid assumption can be made on the remaining domain for economy of solution. However, these as-
sumptions cannot be applied for three-dimensional flow calculation because of viscous flow effects of
endwalls. In chapter 5 we provide various examples of using combined I, C, O-grids and subdomains
technique

4 - EXAMPLES OF 3D EULER COMPUTATIONS

The 3D Euler code here discussed has been firstly developped for single smooth compressor blades
[2, 3], then part span damper was introduced [4] and finally we added downstream splitter for fan ap-
plications.

The sheets supporting channel grids are axisymetric stream tubes provided by a through flow calcu-
lation (fig.3). A simple algebric H-grid is used with a regular tangential distribution of points. The
periodic boundaries start at the leading edge (or trailing edge) with the airfoil meanline slope and
become meridional lines in the far field. In the axial direction particular lines are fitted with the
meridional projection of leading and trailing edge curves. In upstream and downstream region grids
lines are spaced according constant rate increase instead of equal spacing which is used inside the
blade row.

The use of compatibility equations to impose boundaries conditions [2] permits arbitrary distri-
bution of the points on the periodic boundaries and tangential overlaping is not needed. brid ortno-
gonalisation, using Poisson's equation, has been tested but in many case it's not necessary.

To compute velocity field around fan blade including part span damper and downstream splitter ef-
fects we use multi-domain technique (fig.4). One domain is extending from the hub to the streamline
of the splitter lower surface, the second from the streamline of the splitter upper surface to the
part-span damper streamline and the third from the part-span damper streamline to the external casing.
Grid are generated on each domain by a technique similar to that used for smooth blades. Figure 5
shows an example of such kind of mesh, the total number of mesh points is 22000. For both cases
(blade only and blade + part-span + splitter), figures 6 and 7 gives the isomach lines on the suction
surface view and on a blade-to-blade view. A shock appears clearly on the damper and the splitter ef-
fect can be notted on the lower part of the blade

5 - EXAMPLES OF 2D AND 30 NAVIER-STOKES COMPUTATIONS

In figure 8 an 1-0 type grid is shown for a transonic turbine rotor blade. Detailed grid near the
trailing edge is shown in Figure 9. Various sizes of O-grid can be wrapped around the airfoil inside
the I-grid for the resolution of boundary layer growth. As shown in Figure 9, good orthogonality of
grid is obtained near the trailing edge where a trailing edge shock system is anticipated. The compu-
ted static pressure contours are shown in Figure 10 .and detailed trailing edge region is given in Figu-
re 11. The results in Figure 10 and 11 are based on a grid size of 7000 nodes. The accuracy of the so-
lutions are good for the given grid size. Detailed velocity near the trailing edge is shown in Figure
12. The numerical solution was obtained with a upwind relaxation method The laminar-to-turbulent
transition and turbulence is modeled with a two-equation turbulence model with a low Reynolds number
modification. The details of the numerical scheme is given in [5].

The next examples are a solution of the two-dimensional Reynolds-averaged Navier-Stokes equations

completed by the mixing length turbulence model. Numerical scheme is the explicit Lax-Wendroff-Ni fi-
nite volumes technique. More details about applications to cascade airfoils are in Ref.[6]. Multigrid
steps an local time step are used in order to reduce computation time. We use a multi-domain technique
and comoatibilities equations are employed on all bounddries.

The first application uses navier-Stokes solver on two I-grids put on both profile sides (Fig.13).
An Euler solver is applied on the remaining [-grid in the upstream domain. The boundary slope between
the two Navier-Stokes domain is continuous with meanline profile slope and upstream and downstream
domain shape is the classical one adopted for H or I-type grids. Normaly to the profile,meshes are
spaced according to a geometrical progression. This permit to have a mesh size near the blade consis-
tent with the thickness of the viscous wall layer without unacceptable increase of the number of nodes.
On the far wake wider meshes are allowed. The axial spacing is similar to those used in 3D Euler ap-
plication. This kind of grid does not take in account the actual leading edge shape and bow-shock can-
not appear. However most of the flow field is accurately computed and a solution is given in fig.14
for a grid having 18963 nodes. The lambda-shape on the shock/boundary layer interaction zone is clear-
ly shown.

The second application uses C-grid (Navier-Stokes solver) around the profile and a [-grid for the
remaining upstream region (Euler solver). In fact the C-grid is built by adding two [-grids at a small
C-region around the leading edge. Then a orthogoralisation method with relaxation is applied to this
domain and the nodes are renumbered. Fig.15 shows an example of such grid with 20507 nodes. On the
boundary between C and I domain the nodes are the same for both grids The numerical solution is
given on Fig.16 and one can see on a zoom the accurate computation of the oblique shock becoming bow-
shock near the leading edge. The remaining flow field is nearly the same as that computed with I-grid.
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The last example is obtained with an 1-0 type grid (Fig.17) for a modern transonic fan [7]. The

grid shows good orthogonality near the leading edge at the blade tip where a leading edge shock system
is expected. The computed endwall static pressure contours are compared with measured data and invis-
cid Euler solution in Figure 18.

6 - CONCLUSIONS

Several structured mesh-types are used in turbomachine applications.
For the current 3D Euler codes H or I types are widely employed. They are often sufficient for

accurate computation and they have good qualities in the upstream and downstream zones.

For 2D or 3D Navier-Stokes codes, C or 0 types permit a good representation of the complex tran-
sonic viscous flow at the leading edge or at the trailing edge and in the wake. So, several types of
grids are used together in order to combine their qualities. 1-0 or I-C grids have been tested and the
results are presented in this paper.
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BLADE WALLS CASING WALL

CONDOITITOOS

UOWSSTREA

CCONDITIONS

FIGil. COMPUTATION DOMAIN FOR 3 D. FLOWS

H-TYPE I-TYPE

C-TYPE 0-TYPE

FIG.2. DIFFERENT MESH TYPES



MERIDIONAL SECTION UPSTREAM FACE

BLADE-TO-BLADE SECTION

FIG.3. MESH USED FOR 3 D. EULEFR

SMOOTH FAN BLADE
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CAS I NG

PART-SPAN DAMPER

SPLITTER

HUB WALL

1V

FIG.4. TRANSONIC FAN BLADE + PART-SPAN DAMPER + SPLITTER

SPLITTING IN 3 SUBDOMAINS

MERIDIONAL SECTION UPSTREAM FACE

BLADE-TO-BLADE SECTION FRONT VTEW

FIG.5, MESH USED FOR 3 D. EULER

TRANSONIC FAN BLADE + PART-SPAN DAMPER + SPLITTER
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SMOOTH BLADE BLADE + DAMPER + SPLITTER

FIG.6. 3 D. EULER - ISOMACH LINES ON SUCTION SIDE

TRANSONIC FAN BLADE

WITHOUT DAMPER WITH DAMPER

FIG.7. 3 D. EULER - BLADE-TO-BLADE ISOMACH LINES
SECTION SLIGHTLY ABOVE THE DAMPER
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FIG.8. COMPUTATIONAL GRID FOR 2 D. NAVIER-STOKES APPLICATION

ON TRANSONIC TURBINE

FIG.9. COMPUTATIONAL GRID NEAR THE TRAILING EDGE

TRANSONIC TURBINE APPLICATION



FIG.10. CALCULATED STATIC PRESSURE CONTOURS
TRANSONIC TURBINE APPLICATION

FIG.11(A). CALCULATED STATIC PRESSURE CONTOURS

NEAR THE TRAILING EDGE
TRANSONIC TURBINE APPLICATION
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FIG.11(B). CALCULATED MACH NUMBER CONTOURS
TRANSONIC TURBINE APPLICATION

FIG.11(c). CALCULATED MACH NUMBER NEAR THE TRAILING EDGE
TRANSONIC TURBINE APPLICATION

N-,
11

FIG.12. CALCULATED VELOCITY VECTORS NEAR THE TRAILING EDGE
TRANSONIC TURBINE APPLICATION
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LEADING EDGE DETAIL

FIG.15. C-MESH FOR NAVIER-STOKES CALCULATIONS
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HUB-TO-T Ir BLXDE-TO-BLADE

FIG.17. COMPUTATIONAL GRID FOR A SUPERSONIC FAN

KULITE MEASUREMENT VISCOUS F'LOW SOLUTION EULER SOLUTION

FIG.18. COMPARISON OF SHROUD STATIC PRESSURE CONTOURS
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-\ numerical method for solving the three-dimensional unsteady Euler equations on dynamic multiblocked
grid, a bout complex configurations in transonic flow is presented. Two configurations are considered. The first
is a I nig p% lon-store configuration with the store in the captive position, and then vertically launched from the
is ng& p% lon The second is a counter-rotating uanducted propfan. The numerical results are validated by com-
parisons Asith available e xperimental data.

I. INTRODUUt-ION

( omputativinal fluid dsnamics IC[-Dil has matured to the point that steady-state numerical solutions have
been obtained for the floss about complex three-dimensional configurations. These steady-state Solutions are
_11m1lurarionallN expensive, hut unstead~ solutions for complex cot-figurations are so much more expensive that

thev becomne total impractical for most of the technical Community. Part of the reason for the enormous
expcn~c -.f unsrad s~ltions is that the permissible time step is usually restricted by the numerical algorithm
and n~t thc ph 'ic of the Ibis% considered. Small computational cells, even if there are relatively fewk in number

nehIt iar a solid surface. can greativ. increase the number of time steps required to complete the motion. Bi
irmli ini! *.r reduI ing the time step restriction in the numerical algorithm, far fewer time step, can be used ,k hile
still aiptulring thc csscntial ph si~s oif the floss The purpose of thils paper is to address stead\ and. in particular,
iiti-teaddx solu.tions of the [Auler cquations for relatively complex three-dimensional confiCUrations The numneri-
cil ilzcorithmrris I~ki hc di scussed is ith rcard to stabiliti, and the corresponding allossable time steps A method
ii'cd i. ocner-tc three- dimensional blocked grnds, SuIch as used in this work, is described in anothier paper at this

Vpe ci i- lctink! (usre tticntl\ o ther than techniq4ues used to manipulate blocked grids thait move relativ e to
,nt .nother. thle omphai here ss ill be On the method used to Obtain stead\ and tinstead ' % flos solutions and not
oncridl oencrLiti n Selected numerical results, %sill hec presented and compared is ith experrienal data. i hcre

,ui:ilhle 1,, the folIsinc o(,nticiiration, in) transinlic floss Ill %%ins -pylon-store and (2) counter-rotatine

2. F0(Q FOIO R-i)MlUI A N D~l NUNI FRI Al. ;%LO; rI'INl

I he ultimate kIsal in olitipirtationil flid, is to ininion/co the approximations to the most fundamental mrodel-
ln Ii n. ii, l to il% ace most of the physics. Is~hile attaininev nodest execution timeis onl the asailablc

* .: pn.nr I r-iiwfi I ilenic Is sis of rotatin ni achinery beeins is ith the casirie of the modiel ino e nation' in
,j %Iindlda rcfervn,. e fraime in in effort to benefit from the i me-asi mpmotic steady -state solutions is hich ex ist
11 i'lr oL111 nisiioins Otne of the goals here. howsever. is to produce field simulations Of igene ral comiple\
rit~irie o.nlViir,itwn,, incLIilinc thin, ciinliirine interacti nk components Ilietce. the solutions Sought are o1
rnrn in teividi fl-s fields In thr, interest of computational bres iti I. an aISsumption of a nonconducting, ins is-

,0 perft v i' isith no bsrd ' for5 es %Is l he made It is anticipated that vscsous flossfield simulations can be
vi %li dis i ini nnr modificaiins to the proc:eduresoutihned herein. Efforts tossard this end are presently

tili 1%.l In this Ichi, the Linsiril, three dimensional Euler equtitons in comusersatis differential forn iarC
rt11,intd t:-ni a ( irrcsi n refereceo frame to the timec dependent hord\- fitted cujrs litncar reference frame'

r. z I
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where

u I uU + 4,p
Q=IeQ F=J OvL+ ,p

Q W v rowU + p
-e - U(e + p) - ,p

oU + ?]P [ouW+ Cxp

G = Jl LvV+qp ] H J [QvW+YP ]
OwV+ ?7,p wW+4p
V(e + p) -_I_ W(e + p) - Cp

with the contravariant velocities

U = 'u + Yv + ,w +

V = ?,7u + 17YV + 17,w + 17,

W = Cxu + Yv + Cw + ,

The Jacobian of the inverse transformation, i.e. O(x, y, z)/e(, t, ), is given by

J = x (y,z - zy) - yx C - zx") + Z (,"y - yt )

and the metric quantities are

P, = J-(y'z ¢ - ZIIY O, = J-(xy - yxc)

4y = J' (z'Px -xz 4, = - X 4 - y4 - z

, = P (zoy - yZO ?h1 = P- (oy - yxt)

ly = T(Xvzt - zX) It = - X,17, - yr1y - zrplz

= P- (YZ,, - z"XY) = - yZx,1)

The approach taken here is based on the integration of the Euler equations in conservation law form over
discrete contiguous volumes in computational space. This formulation, commonly referred to as a finite volume
method, yields the following discretized integral expression for a three-dimensional computational space with
finite volume (cell) centers denoted ij,k:

OQ ,F 6 H (3)
ar UA l A t

or with -=A11=A4= I
8Q. _ (6F+ ,G +5aR)

at

where 6.(-) - (')../2- (').-1/2

In this expression the components of the dependent variable vectors, QIj t, represent average values for the
i,j,k cell. It is therefore evident that some method must be devised to accurately represent the vector-valued flux
functions F(Q), G(Q), and H(Q) on the bounding surfaces (faces) of the cell. One of the methods used in this
study is based on a one-dimensional analysis of the Riemann problem local to each interface, established by the
discontinuous nature of the dependent variable vector Q within the spirit of a finite volume field. To facilitate the
introduction of the method used in this study, a digression to a one-dimensional Cartesian space is in order.

Flat Order Flux Formula

The analogous (to Eq. (3)) discretized integral form of the Euler equations written for one spatial dimension
in Cartesian space appears as
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3q 0 (4)
at Ax

Godunov2 proposed a procedure to obtain a global solution to Eq. (4) by solving the set of Riemann problems
presented by the interface discontinuities. The Riemann problem local to each interface is costly to solve exactly,
due to the necessary iteration. Many investigators ' ,", 56 have made attempts to lessen this computational expense
by approximating the solution of the Riemann problem. In essence these methods yield an approximate solution
to the exact equation, and hence are dubbed 'approximate Riemann solvers'.

In 171, Philip Roe suggests an alternate procedural choice. Roe proposed to obtain the exact solution to an
approximate equation. The cleverness of Roe is evidenced by his choice of approximate equation. Consider the
quasilinear form of Eq. (4)'s parent conservation law,

aq ao
at+ A(q, Q) aq = 0 (5)

at (a)

where A(qL. qR) is a constant matrix representative of local interface conditions. Matrix X is chosen to have the

following specific list of properties, which Roe "christened Property U (since it is intended to ensure uniform
validity across discontinuities)":

1. It constitutes a linear mapping from the vector space q to the vector space f.

2. As qL - q,- q, A(qL, q ) -(q), where A- =If

3. I-or any qLqR, 'A(qL,qR) . (q,-qL) =fR-fL.

4. The eigenvectors of X are linearly independent.

Restricting X to the satisfaction of Property U results in a special, unique8 averaging process for the dependent
variables from which A is constructed. Referred to as "Roe averaged", the dependent variables are given by the
following expressions:

0 = (e) '/  (6a)

1/2 1/2

OL ULI+ P u (6b)
I/2 + t)/2(

QL eR

Ht = P/HtL+ I2 HR (6cl

1/ H 1/2 - 6
Q1 + OR

where the total enthalpy, H, is defined

H =(e + p) (6d)

The interface flux difference can be expressed as

df -f, -fL = ;" (q,-q,) =Adq (7)

where A is constructed with "Roe averaged" variables. Armed with the eigensystem of A and the knowledge that
the interface differential dq is proportional to the right eigenvectorsof A (as shown in 191). the interface flux
difference can be written relative to the right eigenvector basis of A as

(8)

df =2 a 'J'rjl = Z'alr(J) + aA a Jr0 = df' + df

Physically, the flux difference is shown to be the composition of a collection of waves. In Eq. (8), ,'u is a right
eigenvector of A; t is the strength of the 16 wave (the jump in the characteristic variable across it), A,-, is an
eigenvalue of A (the speed of the 14 wave); and z and Y denote summation over the negative and positive
wave speeds. respectively.

The interface flux can be computed from L-lW of the following formulae

fi/2 =f f >3 at Ojrl (9a)

f.1/2 "fR - >"aAirJ (9b)

f-1/2 I Vt. +YfR - ,a,l).J"r'l (9c)
2(9
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This first-order interface flux formula, commonly referred to as flux difference splitting (FDS), which was
developed for the one-dimensional equations can be used in a multidimensional space provided the assumption is
made that all waves travel normal to their respective interfaces. Also, the special averaging process follows
directly for each component of the velocity vector in multidimensional space.

Higher Order (TVD) Flux Formulas

In order to provide solutions of higher spatial accuracy, a family of schemes" can be represented by the
addition of a corrective flux to the first-order interface flux, Eq. (9), produced in the preceding analysis. Hence
the higher order interface flux is given by:

f,1/2 =f.i/2 + (1 + 4 + fi+ /2d-f,;3 /2J (10)

The principal part of the truncation error for this flux formula is found to be

TE (-41/3) (Ax)2 2a'f(q) (11)
4 a xTf

The details (common names, order of accuracy, etc.) of the members of this family can be found in [11,12]. Two
members, third-order (0 = 1/3) and fully upwind second-order (1 = - 1) were, by choice, exclusively used
(examined) in this work.

The discussion of a higher order scheme inherently involves a method used to control spurious oscillations,
i.e. dispersive errors. The method, actually methods, used in this work concern limiting components of the
interface flux to produce total variation diminishing (TVD) schemes, i.e. nonoscillatory schemes. The following
formulas have theoretical development as TVD schemes only in scalar nonlinear equations and systems of linear
equations in one-dimension. The use of "limiters" yields the following expressions for the corrective flux terms:

df,+i -+ L,(I, -I1, Qs)

df/_1 /2 = Lj(- 1, 1)r 1 2

dfi-,1/ 2 = Z-L(-1, /2

dfr3/ 2 = Y-L,(3, l)rj 1/2

One of the limiters studied, referred to as a minmod limiter, is implemented by way of the following definition
of the L function

L,(m. n) = minmod(2, 1 [3ko,1 2) (13)

with o Jd, a parameter proportional to the change in dependent variablec across nearby interfaces, detined by

,) a() (,) (J _

,_ ., - , q  + 2 , _ dq,+ (14)

where P-11 is a left eigenvector of X The minmod limiter is then defined

minmodlx, yI = sign(x) max (0, min[IxI, y sign(x)1} (15a)

and the parameter fi is a "compression" parameter given by

<3-,-- 1-0 (15b)

In this worl: the maximum pt was used in all cases.

Another limiter studied, this one credited to Roe 13, is called Superbee. It is implemented as follows
Lj(m, n) = r 0~M (j, )

m n)cmplm(".,/2 ,) (16)

where
cmplimjx,yj = sign(x) max (0, minllx, fly sign(x)J, minlfilxl, y sign(x)l) (17)

and another compression parameter p. differing from that defined by Eq (15b), is taken here to be two.

Approximately Factored Implicit Scheme

In light of the fact that Eq. (3) has yet to be integrated in time, no mention has been made as to what time level
the numerical interface fluxes appearing on the RHS are evaluated. The underlying theory of the approximate
Riemann solver presented thus far is based on explicit concepts which result in an unattractive, rather stringent
time-step restriction. Equation (3) can be written in a linearized discrete-integral delta form to cover a broad
class of explicit and implicit schemes":
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OAr ,4.Ar / Q_[I + ~ M!]AQR -- -  R" +  T Q1(18)

Some of the implicit time differencing schemes represented are (0 = 1, 1P = 1/2) three point backward,
(0 = 1, ?p = 0) backward Euler, and (0 = 1/2, lp = 0) trapezoidal.

Formally, all terms appearing in this equation should result from a single flux formulation. Superior results
have been obtained, though, by evaluating the residual term R' with flux difference split theory, and the left-
hand-side (LHS) operator with flux vector split (FVS) theory, see [15 and 16]. The rationale behind this is
presently attributed to the more dissipative nature of the FVS theory. The following expressions, Eq. (19 and 20),
complete Eq. (18) for this hybrid scheme

M = 6jA t + 6iA + 6jB t + 6JB- + Ct + 6kC- (19)

with
tg

A+F-.clQ

A (--Y
aQ

t3-
BQ

where P, F-, G, ... result from Steger-Warming flux vector split theory with the elements of A+, A-, 8%
being given in 117], also

R= + 6iG" 6kH" (20)

where, F, G, and H result from the flux difference split theory discussed herein.

The LHS of Eq. (18) tends to be cumbersome and difficult to invert, not to mention very costly. In light of this,
the LHS was approximately factored into the product of two operators, each of which involve the passage of
selected information. Here a forward and backward operator are used (block LU factorization), yielding the
following two step (LU) scheme:

[ OAr M [I +OAr M- ]AQ' = - R + 1- AQ" - 1  (21)
I1+ 1P 1+41 -+4) 1+V2

or

O~Ar

1+ (6,A . + 6,B . 
+ 6C; )IAQ" Q = (22a)

1/+ OAr- (6,A -. + 61B- + OkC- )IAQ' = AQ" (22b)

QA+ I = QA + AQ" (22c)

Although factoring has been shown to degrade the unconditional stability of Eq. (18),s it has been our
experience that the (LU) scheme apparently retains this touted attribute. Equations (22) are in the final form of
the mathematical model developed for the time-accurate analysis.

Boundary Conditions

Since the approximate Riemann solver is a characteristic based scheme, the characteristic variable boundary
conditions developed in [1 relative to a three-dimensional time-dependent body-fitted reference frame for
inflow, outflow, and impermeable boundaries are employed where applicable. As in [1], phantorn cells are
utilized to implement these boundary conditions. The changes in dependent variables (A ),and AQ',are set to
zero in the phantom cells for inflow, outflow, and impermeable boundaries.

3. BLOCKED GRIDS

As mentioned in the introduction, the scope of this work can encompass extremely complex flowfields as well
as complex geometries. At times, in order to adequately resolve these flowfields, an enormous number of cells
are required. With the present formulation, approximately 190 vital pieces of information must be known for
each cell (up to 115 simultaneously). Bearing this in mind, it is easy to see how the vast majority of present-day
supercomputers are unable to support such calculations due to insufficient internal (primary) memory. In addi-
tion, the mesh (grid) for most complex geometries is more easily generated in pieces, where each piece generally
conforms to a single component of the overall configuration. These are but a couple of the reasons which can be
cited for the segmenting of one virtually insurmountable flow environment into several, smaller, more manage-
able, intercommunicating flow environments.
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This segmenting is commonly referred to as composite gridding the field, of which there exist three commonmethods: overlaid, patched, and blocked. Exar~,les include: the chimera (overlaid) scheme of Benek, Buning,
and Steger 9 , the zonal (patched) scheme of Rai , and the dynamic block scheme of Belk17 . The approach taken
here, a dynamic blocked grid method, is similar to that taken by Belk. In [17], Belk investigated many of the
dilemmas posed when attempting time-accurate simulations of flowfields while using a blocked grid structure of
a dynamic (moving) mesh. His emphasis was on the formidable task of developing a computer algorithm to
handle a completely arbitrary arrangement of generally dissimilar blocks. Belk's general approach was used here
for the wing-pylon-store computations. Unfortunately, this general approach adds to the complexity of the code.

For the case of turbomachinery, the nature of the geometry suggests possible block arrangement and charac-
teristic restrictions which can yield significantly simpler algorithm logic. The block structure proposed here for
the specific case of dynamic cylindrical geometries (generally, bladed or finned bodies of revolution) will be
referred to as selected similarity mapped multiblock. For details of the block arrangement for the special case of
turbo#a3chinery, see [211 and [22]. For a discussion of the general case, see [17] and [23].

4. RESULTS

Numerical results are presented for store aerodynamics involving the mutually interfering transonic flow
about a wing-pylon-store configuration, in both the captive and launch positions. Also, results are presented for
rotating machinery involving a counter-rotating unducted propfan propulsion system.

WinQ-Pvylon-store

Steady state multiblock solutions are demonstrated by computing the flow about the wing-pylon-store con-figuration with the store in the captive position. Unsteady dynamic multiblock silutions are demonstrated by
computing the flow about the complete multibody configuration as the store moves away from the parent wing-
pylon configuration through a vertical launch trajectory. Unfortunately, no experimental data is available forcomparison with the unsteady moving store solution; however, experimental data is available for the captive
position and is compared with the numerical solutions.

The wing-pylon-store configuration considered was the same as that used in wind tunnel experiments. The
basic configuration is shown in Fig. 1 with the store in the captive position and in Fig. 2 with the store located two
store diameters below the pylon. The wing was a symmetrical airfoil and the leading edge was swept 45 degrees.The store was an ogive-cylinder with a cylindrical sting joined to the store boattail. The pylon was a biconvex
airfoil shape, and a small gap existed between the store and pylon in both the experimental and computational
configuration. The complete grid was composed of 30 blocks.

The numerical solution was run for a freestream Mach number of 0.85 and zero degree angle of attack.
Numerical and experimental surface pressure distributions on the outboard and inboard sides of the store in the
captive position are shown in Figs. 3 and 4, respectively. Notice that there is a large lower pressure region on the
inboard side of the store (Fig. 4) than on the outboard side of the store (Fig. 3). Figure 5 is included to show that
the same thing happens, computationally and experimentally, on the pylon. The result of this pressure differen-
tial would be that a released store would have an initial side force that would push the store toward the fuselage
rather than away from the fuselage.

The reason for the pressure being lower on the inboard side of the store and pylon is attributed primarily to the
presence of the store. Figure 6 is used to argue this point. This figure compares computations corresponding to
the store dropping through a point two store diameters away from the pylon .. ith steady state experimental data
lu, tc ,-ing and pylon only (no store) at the same flow conditions. Notice that the inboard and outboard pres-
sures on the pylon without the stere present are now much closer to the same values. (One should note that it is
dangerous to compare unsteady computations with steady state experimental data, but unsteady experimental
data are not available and the assumption is made that the store being two diameters away will not significantly
influence the unsteady flow about the wing and pylon.)

Counter-Rotating Propfan

The conffiguration considered is the GE UDF8-8, a counter-rotating unducted fan immersed in an oncoming
M. = 0.7 axial flow, see Fig. 7. The configuration has two fan rows with eight blades per row. The fore row
rotates clockwise and the aft row rotates counterclockwise. Both blade rows rotate with an advance ratio, J, of
2.8. The higi-,,- swept, tapered, twisted, thin blades are designed to reduce the axial Mach number through the
blading to alleviate compressibility losses.

The ot = 0* solutions appearing herein and in 1241 were obtained using only two blocks, one per blade passage
(benefitting from solution symmetry). Although only two blocks were used, axial interblock communication was
implemented with a full buffer ring (temporary storage area for injected or extracted data). The procedure
involves extracting data, imaging the data to form a full 360* communication buffer ring, then allowing the
appropriate data to be injected based on the positional relationship between the blocks and the buffer ring. Each
block mesh was H-type in all directions and contained 56x21x10 (i,j,k) cells.

To begin the transition from the first-order time FVS solutions presented in [241 to the FDS solutions pres-
ently available, consider the comparison of the local relative Mach number of [241 to that of second-order time
FVS with block-block interfaces maintained to the interior level of spatial accuracy (up to second-order for FVS).
as shown in Figs. 8. At first glance it is quite noticeable that the second-order solutions do not expand nearly as
much as the first-order. Presently the cause of this anomoly is under investigation. It is not known whether this is
due to the modifications made to the block-block interface or to the use of three point backward (second-order)
time differencing.

With this noted and under investigation, the transition is completed with the local relative Mach number
comparison between FVS second-order space and FDS third-order space (minmod) both with three point back-
ward time differencing, as shown in Figs. 9. The increase in spatial resolution due to FDS is evident with the
sharper shock definitions and the ability to resolve (to some extent) the geometric subtleties of the blade geome-



try. Any enhanced resolution would be welcomed considering the extreme coarseness of the blade chordwise
mesh (only 10 cells from leading to trailing edge). Also, an increase in the tip loading is noticed with the FDS
method.

In Figs. 10, the unsteady behavior or lack thereof as predicted by the FDS method is presented. The curves
are of time-averaged freestream relative pressure coefficient, Cn, with the minimum and maximum local cell
values indicated by the fluctuation bars. From this plot one can get a feel for the regions of greatest fluctuations
and their magnitude. There exists evidence of the inherent unsteady behavior of the flow, though it is by far not
prominent. Figures 10 support the comments in 124] regarding lack of variation in the blade surface relative
Mach number for both fore and aft blade rows. Though little variation is shown overall, there is more variation in
the aft blade row, as expected. The only Cp variations of any significance occur on the pressure side of the aft
blade near the root and midspan.

As a final note on the UDF8-8 comparison, the present FDS integrated performance parameters of power
coefficient, efficiency, and torque ratio, (Cp,, n], Q2/QI) respectively, are compared in Figs. 11 to that of FVS
second-order time and measured data as reported in 1251. Reasonable agreement is shown to exist with the
measured data viewing the inviscid nature of these calculations. Also, the intuitive trends regarding the less
numerically dissipative nature of the FDS method compared to the FVS method is a plausible explanation of the
relative position of the time-averaged data with respect to the measured data. That is to say, one might expect to
see stronger, farther aft (chordwise) shock patterns with FDS resulting in higher compressibility losses; conse-
quently, more power-in for less thrust-out (lower efficiency), as shown in Figs. 11a and 11b would not be
unusual.

5. CONCLUSIONS AND COMMENTS

A numerical scheme was presented for solving the three-dimensional unsteady Euler equations on dynamic
multiblock grids for complex configurations, and comparisons were made with available experimental data. The
numerical formulation used permits extremely large time steps, such that the time step size selected can be
established by the physics of the flow being solved and not the numerics of the algorithm used. This is particu-
larly important for Navier-Stokes calculations where extremely small cells with high aspect ratio (similar to this
piece of paper on which these words are printed) could severely restrict the time step for most algorithms.
Navier-Stokes calculations on extremely fine grids with high aspect ratio cells of this type, have been successfully
carried out by Simpson' 6 for maximum Courant numbers greater than 10'.
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Figure 1. Wing-Pylon-Store Configuration with Store in Figure 2. Wing-Pylon-Store Configuration with Store
Captive Position Located Two Store Diameters Below the Pylon
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A Structured Approach to Interactive Multiple
Block Grid Generation
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SUMMARY

The sheer variety of problems found in Computational Fluid Dynamics tcFD) has
dictated a need for grid generation methods of the utmost generality. Experience has
shown that user interaction and graphical feedback are two necessary features of a
successful method as well. Employing these ideas, a structured method of grid
generation has been developed, allowing a grid system to be constructed
through the use of four specialized codes, accessed on two machines. These codes are
based on the multiple block concept, whereby the flowfield domain is decomposed into a
number of contiguous subdomains, allowing for efficient grid generation and flowfield
solution. The first of these codes aids the user in inspecting the flow domain and in
developing a suitable blocking strategy for the block system. A second code is
then used to establish the exact connections between abutting blocks and to set flow
boundary conditions on all surfaces of the block system. This connectivity and
boundary condition data is accessed in the final two codes to construct the grid itself.
The third code generates the surfaces of each block in the system, and the final
code distributes grid points on the block interiors. The intricacies of these codes
are explained along with an example, conclusions and projections -r further work.

INTRODUCTION

Since its inception at the turn of the decade, the idea of multiple-block grid
schemes has become so widely used and accepted that its justification hardly seems
necessary today. Nevertheless, the advantages of a multiple-block scheme over a single
block method deserve mention. The foremost advantage is that by reducing the flow domain
to a number of subdomains, complex geometrical shapes may be modelled mcre easily and
with greater numerical accuracy than with a single block. One need only compare the
geometrical shapes generated routinely today with the more difficult single block
configurations of a few years ago to realize the increased geometrical complexity that
multiple block methods have permitted. Multiple block methods also increase the maximum
total allowable size of the computational problem, since only one or a few blocks need
reside in core memory at Fny given time, with the remaining blocks residing on an
external device. This allows multiple block grids with millions of grid points to be
generated and used on computers with enough internal memory for only a small percentage
of the total grid size.

Multiple block flow solver methods have been developed and used at General Dynamics
Fort Worth Division (GD) since 1985. Each Euler and Navier-Stokes solver in use at GD is
structured with the same basic architecture (ref. 1, 2). Each solver is written for use
on a Cray supercomputer, and each retains only a single block in memory at a time.
To make full use of the vectoring capabilities on a Cray, the total grid system is
normally divided into as few a number of blocks as possible, with each of the blocks
being approximately equal in size as permitted. This constraint forces an added
generality to the boundary conditions (bc's) - the allowance for several bc types on a
given wall of a block. The solvers described above are used for a variety of
computational flow analyses, and as might be expected, the configurations these codes see
are as varied as the flow conditions, usually involving several geometrical length scales
in a single problem. Furthermore, these analyses are performed in a design environment,
such that rapid turnaround time is always a high priority.

In view of these constraints, a list of requirements for d multiple block grid
generation package was not difficult to formulate. In 1985, the three most crucial
requirements for a multiple block grid system were generality, speed of generation, and
accuracy. Coupled to these was the need to apply the grid methods to all in-house CFD
codes and the ability to specify boundary conditions on the cell, rather than face,
level. These considerations served as guidelines for the initial development of the grid
generation system (ref. 3). The requirement for geometric generality was met by making
the codes highly interactive. In combination with the interactivity, extensive graphics
capabilities were included to ensure the desired level of accuracy. By making the system
interactive, the time-consuming duplication of effort associated with batch codes was
avoided.

After over four years in development, GD now has a grid generation system which
satisfies all of the requirements estAblished in 1985. Today's software allows the user
to generate multiple block grids for generalized configurations and generalized flow
conditions. The volume grid file and the flow solver-specific boundary condition file
created with the codes are directly accessed by the flow solver. The entire software
package is shared between two computers - Silicon Graphics IRIS Workstations and CRAY
supercomputers. On the IRIS, three codes have been developed fc, decomposing the
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domain into blocks, specifying interblock connections and flow boundary conditions, and
generating the block surface grids. Three separate programs were necessary due to the
memory constraints of the IRIS, but the added overhead has not proven to be significant.
The CRAY-based software consists of a single code for the generation of the block
interior points. This code could equivalently be housed on the IRIS, but the need to run
the flow solver on the CRAY and the CRAY's superior computational power make it the
natural choice.

The intent of thin papcr is to outline the procedure routinely used at General
Dynamics for the generation of multiple block grids. Successful generation is contingent
upon delivery of a usable description of the configuration, and so in-house techniques
for conversion of geometric models is explained fi:st. Next, the four-step procedure,
encompassing domain decomposition, connectivity generation, surface grid generation, and
volume grid generation is overviewed, explaining both existing and developing
capabilities. Each of these steps is applied towards the generation of a multiple block
grid around the forebody of an F-16 for further illustration of the methods. Finally, an
analysis of the current methodology is made to help project the future direction of this
interactive grid generation system.

GEOMETRY PREPROCESSING

Computer aided design (CAD) has become a standard tool in the aerospace industry for
geometrically defining developing configurations, and the majority of advanced designs
which are used in CFD studies have indeed been created on CAD systems. In many of these
systems, the geometry is represented as a combination of planar cuts and surface splines.
At GD, several CAD packages with differing geometry representations are utilized daily on
various projects. The differences in the various CAD systems, howeer, have made it
necessary to establish one universal format for direct use in the interactive grid
generation software. In the resulting fcrmat, the entire configuration surface is
represented by a number of patches, each patch containing an m by n well-ordered array of
physical points. We refer to each patch as a network, and to the collection of networks
as a database. There is reasonable generality of the types of suitable networks, in that
networks may overlap or abut with point, slope or no continuity. For ease of grid
generation, however, it is desirable to have point continuous networks, although totally
discontinuous database networks will not decrease the range of program applicability.
Since spline equations are not stored in the resulting database, it is necessary to have
a sufficient number of points in each network to resolve the important geometric
properties of the configuration. A suitable network database for the F-16 forebody is
shown in Figure 1. Fourteen networks are used to define this model, with computational
dimensions varying from 3x10 to 28x25. Notice that the areas of higher resolution in
this model generally correspond to regions of large surface curvature.

Figure 1. Fourteen Network Database about F-16 Forebody

Traditional methods for downloading CAD models to the correct grid generation format
were at best cumbersome, and often required the CAD operator to sort data files by hand,
to respline curves and surfaces, and to rely on visual inspection. It was not unusual
for the operator to invest a week or more to accomplish this task. Consequently, a
program was written in 1988 to streamline the creation of databases on the CATIA CAD

'- .:.. In this batch code, A 'iv R qurface model is automatically broken into networks,
piacing network edges at lines of intersection in the surtacp iodel. ror :,impie



configurations, the user time has been reduced to an hour or so, with the total
throughput time on the order of four hours. The database creation time for more complex
configurations is not expected to be much more than that required for simpler
configurations. Although this program is currently compatible only with the CATIA
system, work is underway to extend it to other CAD systems as well. This capability will
greatly enhance tne interface between the design and the CFD groups.

DOMAIN DECOMPOSITION

Before a grid system can be generated, an appropriate blocking structure must be
devised to divide the problem domain into smaller, more manageable sub-domains. Many
factors are considered when decomposing the problem domain, including the computer
hardware, the flow solver software, and the geometry. The maximum computational size of
a block is restricted by the amount of core memory available on the computer. The
optimal size of a block is also machine dependent. On a vector machine like the
CRAY, a small number of large blocks is preferred; on a parallel computer, however, a
large number of small blocks is more efficient. Furthermore, the manner in which blocks
interconnect, such as overlapping or point to point matching, is flow solver dependent,
also impacting the blocking strategy. Finally, geometric complexities of the
configuration being analyzed may impose a practical lower limit on the number of blocks
required; certain complex geometries just cannot be represented with only a few blocks.

Restrictions on the blocking structure imposed by geometrical complexities are
typically difficult to visualize, and are therefore difficult to detect. This difficulty
is usually tempered if a physical model of the configuration is available, but physical
models are expensive, time-consuming to make, and are not easily modified to reflect
geometrical changes. Although still in a development stage, GRIDBLOCK, the first of the
three interactive IRIS codes, offers an alternative solution to this problem by providing
the capability for real-time graphical manipulation of the 3-d configuration. More
importantly, however, it in ,-c'i _n cfficicrt =Zan i IsLyLiatin .. d yc. ti
blc;%ing scnemes.

A typical GRIDBLOCK screen is shown in Figure 2. Shown is the F-16 forebody
database network with a preliminary blocking structure around the configuration. Both
mouse and keyboard input control the options in GRIDBLOCK. The main options of the code
are displayed in a menu on the lower left side of the screen. This menu cnanges auring
execution for continual display of currently available options. Above the menu area, a
diagnostic window displays statistics pertinent to the current function. While defining
lines, for example, the current 3-D coordinates of the cursor are displayed. The small
window above the diagnostic window is used for typed user input such as file names and
numerical data. The window above this is used to display tep-by-step instructions for
the current function, which leads the first time user through the program and serves as a
reminder for the experienced user.
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GRIDBLOCK begins with a display of the 3-D wire-frame model of the problem
configuration, which is then rotated, scaled, and transl~ted for further examination. As
ideas for dividing the dumain are formulated, three-dimensional lines representing the
bounding edges of the blocks in the structure are drawn by the user about the database.
These lines can be created in a variety of ways, and once created, can be further edited
and modified as becomes necessary. It has been observed that a good understandinq of the
entire block can be derived by displaying only the edges of the block. This simplifies
the work in GRIDBLOCK by eliminating the need to define and display surface shapes.

The most straightforward method of composing a multiple block structure in GRIDBLOCK
is to build each block one edge at a time. These edges, called connectors, are composed
of one or more line segments. Several types of line segments are available: straight
lines, elliptic arcs, and smooth cardinal spline curves. These simple segments can be
quickly combined to create virtually any 3-d curve. Each connector terminates in two
nodes, one at each end. Any number of connectors may share a node, and connectors may be
linked only at nodes. As a connector is defined, it is not immediately assigned to a
block edge, but is simply a reference line, which is surprisingly helpful when first
developing a blocking scheme. Connectors can later be edited (by moving individual
points, stretching, translating, etc.) or even deleted. If a node location is changed,
all connectors attached to that node are modified to maintain the connectivity. Nodes
are drawn as large dots in Figure 2.

Once several connectors are added to the system, they may be grouped together and
assigned to blocks. When twelve connectors are assigned to a given block, the user is
prompted to define computational directions and dimensions on that block. Improper
assignments are not allowed and are indicated to the user. For the F-16 forebody
illustrated in Figure 2, the flow domain has been divided into a total of seven blocks.

Although the simplest, defining blocks one connector at a time is the most time
consuming and monotonous mode of creation. Thus, work on GRIDBLOCK is underway to
provide facilities for creating an entire block (i.e., all twelve edges) at once.
&veral basic snapes will oe available, including rectangular blocks (for H-grids), half
cylinders (for C-grids), and full cylinders (for O-grids). These shapes will then be
translated, rotated, and scaled to position in the block structure. All commands
available in the connector mode described above will be carried to this full-block mode,
so that a rough block shape may first be generated, with further connector refinement
performed later as needed. Again, when the block definition is completed, the user will
be asked to supply computational coordinates and dimensions.

Many of the connectors defined in a typical system are shared by more than one
block. A procedure is under development which will determine the user-drawn interblock
connections automatically, and will normally be accessed after all blocks have been
definei. Upon exiting the program, all block to hlocY connections established
automatically will be stored in a file referred to as the BOCON file. The file at this
point will also contain cartesian definitions of the connectors and the composition of
each block (connectors, dimensions, etc.). The set of data defining interblock
connections is then the starting point for the second IRIS code, GRIDBOUND, which allows
the user to complete interblock connections and to set the flow boundary conditions on
all surfaces of the blocks. The cartesian connector information is later accessed in the
surface grid generation routines, and the block composition data is used when restarting
the GRIDBLOCK program. The manner in which the GRIDBLOCK code and BOCON files fit into
the master plan of grid generation is explained in Figure 3.

CONNECTIVITY GENERATION

Once the domain blocking strategy has been developed, the straightforward yet
tedious task of assigning flow boundary conditions and determining remaining interblock
connections must be performed. This is essentially a bookkeeping task which is easily
managed with the second IRIS code in the process, GRIDBOUND. Output from GRIDBOUND is
the completed connectivity table (BOCON file), which is then used in GRIDGEN2D and
GRIDGEN3D to maintain grid point continuity across connected block faces. After the
multiple block system is completed, the connectivity data is converted in GRIDGEN3D to a
format for direct use in the flow solver. (see the FLOWCON file in Figure 3)

Like GRIDBLOCK, GRIDBOUND i an int(rative graphius code with input controlled
through pull-down menus, making the program simple to use for even the novice. The
user's initial task in GRIDBOUND is to specify the intended flow solver, so that the
correct set of flow boundary conditions are made available in the interactive session.
Currently three different solvers may be chosen within GRIDBOUND, but the effort required
to permit additional solvers is minimal. As stated earlier, the GRIDBLOCK code is under
development to write out a preliminary BOCON file containing interblock connections
determined in that code. Currently, however, blocks are created in GRIDBOUND through
pull-down menus designed for block definition, and each block is initialized with no
boundary conditions.

All blocks are schematically drawn in GRIDBUUND in computational space. Figure 4
shows t_ Li7. r. m &L;.er several different bc's of the seven block F-16 forebody have
been specified. Note that bc types are differentiated in GRIDBOUND by color. Each block
can be rotated independently so that each of the six faces can be examined.
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GRIDBOUND provides several methods for ensuring that all necessary bc's have been
specified as desired. High-light bars can be scanned over each face, with the cell bc at
the intersection of the bars listed at the bottom of the block window. For connecting
bc's, a cell cursor appears at both the high-lighted source cell and the corresponding
target cells. By moving the high-light bars over the connection region, it is easy to
verify that connections are oriented correctly. It is also possible to make all regions
of a specified bc type blink. This tool is especially helpful for quick identification
of regions with no set bc at all, which is usually the final check hefore exiting the
program.

GRIDBOUND offers a number of block editing commands as well. Dimensions of existing
blocks may be changed by adding oi removing planes of points anywhere in the block.
Blocks may also be split into smaller blocks, with connections at newly created surface
point= n the dividing plane set automatically. This allows blocks which are continuous
in space to be generated as a single block, to be later divided to satisfy the equal
block size objective. Blocks can also be added later or removed entirely. Changer such
as these affect the overall blocking structure established originally in GRIDBLOCK,
causing the structure to be no longer compatible with surface or volume grids created in
the two codes described next. Therefore, a mechanism to forward the GRIDBOUND changes to
GRIDGEN2D files has been included in GRIDBOUND.

SURFACE GRID GENERATION

The two IRIS codes explained above allow the user to establish the topology of the
system, the interblock connections, and the flow boundary conditions. These codes may be
thought of as grid generation preprocessors, since they do not determine actual grid
point locations. The grid itself is generated in components, starting with block edges.
The block edges are then used as bounddry conditions for the block faces, and the
resulting block faces are used as boundary conditions for the block interior. Both edges
and surface grids are generated in GRIDGEN2D, an IRIS code initiated in 1985 (ref. 4),
and the subject of this section. Since expanded to more than 40,000 lines of Fortran,
GRIDGEN2D now has extensive plotting capabilities, and offers diagnostic windows to aid
the user. A typical interactive window from GRIDGEN2D is displayed in Figure 5.

Starting

As illustrated in Figure 3, both the database and the BOCON file are used as
starting points for surface grid generation. Upon choosing a block and a face to create,
the user divides the face into any number of subfaces. Each subface may span a portion
or the entirety of the face. The subface feature is demonstrated in Figure 6, which
depicts the downstream planes of blocks three and four which abut blocks five through
seven and the inlet face. The block 4 face has been divided into three subfaces, and
note that three of the edges of subface 3 run along the inlet lip. By defining the edges
of each subface, points interior to the entire face may be explicitly specified. The
structure of the subface is easily modified, and in many cases, only a single subface is
necessary.
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Edge Distribution

Each of the four edges of a subface is generated before proceeding with interior
point plac'ement. An edge is created in three stages: edge definition, breakpoint
placement, and grid point distribution. The edge definition stage consists of defining
the 3-d shape of the edge by piecing together a number of segments interactively defined
with the keyboard or graphically. Available segment types include edges defined earlier
by GRIDBLOCK, segments traced from the database, simple geometrical curves, curves stored
in exterior files, user-defined curves in 3-d space, and user-defined curves constrained
to a database or grid surface. The first of these segment types, which allows the edge
definitions to be read in directly as defined in GRIDBLOCK, eliminates much of the
duplication and confusion inherent with GRIDBLOCK to GRIDGEN2D transition. The last of
these segment types is particularly useful when distributing interior surface points via
the parametric elliptic modes, as explained later.

In stage 2, breakpoint distribution, the newly defined edge is broken into a number
of subedges, separated at interactively-chosen locations referred to as breakpoints.
Grid points are automatically placed at breakpoints and at the beginning and end points
of the edge. Breakpoints provide a convenient means of clustering grid points at various
locations along the edge.

In the final stage, the edge grid points (as specified by the block dimensions) are
distributed between breakpoints as the user requires. Initially grid points are
distributed at equal arc increments, but the number of grid points and their relative
distribution between breakpoints may be user-set. In addition to equal spacing, grid
points along an edge may be distributed by either a two-sided hyperbolic tangent function
(ref. 5), a one-sided geometric stretching function, by clustering to edge curvature, or
by scaling a distribution function defined elsewhere in the grid. This latter
distribution method is an easy way to maintain the same general clustering at opposite
edges of a given face.

The entire edge generation process in GRIDGEN2D is menu-driven with a continuous
graphics display. Any of the three stages above may be entered or reentered during edge
construction. Graphical editing is added to allow for minor changes wiLhout duplication
of effor*, ani on-screen help-menus are provided to assist the unfamiliar operator. The
availability of linear, cubic and exponential splines (ref. 6) provides an additional
degree of numerical control, and these edge splines may be applied to x, y or z
coordinates, as well as to the arclength.

Interior Point Distribution

Grid points interior to a subface are initialized by interpolating from the
subface's four edges. Several algebraic methods are available for initialization,
including transfinite interpolation with linear and arclength based (ref. 7)
interpolants, and polar interpolation, which distributes points around a user-chosen axis
in 3-d space.

Occasionally the algebraic initialization schemes are sufficient for the user's



purposes, but the majority of algebraic grids require further refinement. The
initialization methods described above interpolate solely from the edges, and generally
do not affix interior points on the intended shape of the surface, defined either by
database networks, by interpolation, by planar surfaces, or by LaPlace's equation. When
the surface shape is defined by database networks, therefore, the provisional surface
must be interpolated onto the intended surface. In GRII)GEN2D, the interpolatiocn proceeds
in only the z physical coordinate, with the x and y coordinates held fixed. This means
that it is often necesbarv to rotate the grid before the interpolation takes place, so
that the optimal orientation of interpolation is aligned with the z physical axis. This
rotation is done graphically so that the user can be confident of the chosen orientation
for interpolation.

Interpolation of the z-values guarantees the correct surface shape, but makes no
guarantees about the distribution of points on that surface. When the interior point
distribution after interpolation is not acceptable, an elliptic solver is utilized.
Elliptic solvers redistribute interior grid points to satisfy a set of elliptic partial
differential equations (pde's), specifically a transformed set of Poisson equations.
Solutions to elliptic equations of this form are generally smooth, and obey a maximum
principle (no grid crossing) in the case of LaPlace's equation, so they are natural
candidates for grid generation.

There are four modes of elliptic solvers in GRIDGEN2. The first two solve directly
for the new grid point locations (x, y and z) in an iterative process. For planar or
nearly planar problems (where surface shape is not crucial, as in block interfaces), the
2-d equations of Thompson (ref. 8) are solved. For 3-d surfaces where shape is
important, the modified Thomas (ref. 9) equations are solved. This latter set accounts
for the curvature of the surface in the driving equations, essentially solving the
equivalent Thompson equations on the 3-d surface. In each of these methods, only x and y
values are calculated by the pde's, with z values updated through database interpolation
(when applicable) as described above. Both methods also require that the surface first
be rotated to a single-valued orientation in the z direction. When no suitable rotation
exists, as in cylindrically shaped grids, it is necessary to divide the face into several
subfaces, and to work on one subface at a time (see the beginning of this section).

The dissection of a given face into single-valued subfaces and the corresponding
solution of the elliptic equations on these subfaces tends to be a tedious task. For
this reason, two other elliptic solver types are included in GRIDGEN2D. Both techniques
incorporate the same driving equations as above, but solve the grid in parametric
coordinates, rather than in cartesian coordinates. These two parametric solvers employ a
modified form of the equations popularized by Warsi (ref. 10), and differ only in their
choice of parametric variables.

The easier to use of the parametric solvers we refer to as the subface parametric
mode. Here, parametric coordinates are initially set equal to the computational indices
of the existinq face, and the elliptic equations are solved on this initial grid. This
method is useful for subfaces which maintain the correct surface shape but have an
unacceptable distribution of points on that shape.

The second parametric mode is referred to as the database parametric mode. In this
mode, edges of the face are first generated in terms of the computational coordinates of
a selected database network. With this technique, parametric coordinates are then
interpolated onto the face interior, with Cartesian coordinates in turn interpolated from
parametric coordinates. The elliptic solver is then run in a manner similar to the
subface parametric mode. Although this solver is the most difficult of the four to use,
the difficulty lies in understanding the concept, and not in the mect'anics of running the
solver. Because this elliptic solver mode requires that only one network be used to
define the surface, it was necessary to equip GRIDGEN2D with an extensive database
network manipulation routine. In this routine, networks may be scaled, translated,
reduced and duplicated in a graphical, interactive environment.

The idea and mechanics of the GRIDGEN2D parametric elliptic solvers are explained in
Reference 11. Because this method uses the standard Thompson (ref. 8) equations in a
transformed parametric space, the resulting grid will be independent of the actual
parametric representation. This is in contrast to other parametric methods (c.f. ref.
12) employing an abbreviated form of the parametric equation, which require a smooth
distribution of parametric coordinates in physical space to insure a smooth surface grid.
The biggest advantage of parametric solvers is that there is no need to rotate the
surface grid to a single-valued orientation, as is often the case for the standard
elliptic solvers. This permits the very easy generation of generalized surfaces.
Drawbacks of the method are that set-up time is a little longer, and the numerical scheme
is slightly slower.

Embedded in the standard elliptic grid generation equations is a set of functions
which influence the distribution of grid points on the interior. Various forms of these
control functions have been proposed over the years, and three of the more proven methods
have been incorporated into GRIDGEN2D. These methods include those of Thomas and
Middlecoff (ref. 13) and Sorenbon (ref. 14) and each method is extended in GRIDGEN2D
for use on 3-d surfaces, rather than 2-d planes. The third method backs out the control
functions from the existing grid, and then smooths the values, so that kinks in the
original grid will be removed while maintaining the important features of the grid.



When engaging the subface parametric solver described above, it is possible within
GRIDGEN2D to enhance the control functions for a further degree of grid point control.
By attaching a solution array obtained from an external source (such as a flow solution),
grid points may adapt towards gradients in the solution by the method described in
Reference 15. A magnet function may also be applied, in which the user graphically
defines curve and point magnets on the surface where additional grid point clustering is
desired. Both of these methods create components which are added to the control
functions described above.

Several additional features in the elliptic solvers deserve mention. First, there
is an interactive display of the surface grid during the execution of the solver,
allowing the user to visualize the grid's iterative convergence. Further, the view of
the grid may be manipulated between iterations. Secondly, any number of subfaces may be
loaded into the elliptic solvers at a time, so that the entire face may converge
uniformly. Finally, edge boundary conditions other than Dirichlet (fixed) may be
selected for each edge of each subface. Orthogonality conditions will slide edge points
along the original shape to enforce an orthogonal intersection with the edge. Abutting
conditions allow for differencing across edges which are adjacent in physical space but
not in computational space. This latter feature, along with the multiple subface solving
is equivalent to a multiple block capability on the surface, rather than the volume
level.

Finishing Up

The surface grid generation procedure explained in this section is repeated for each
subface in the face, and for each face in the block. When a given block is completed,
the next block to be generated is loaded into memory. In so doing, all interblock
connections from the previous block are updated to the remaining blocks in the system.
This procedure insures that each block interface need be generated only once. Once all
faces of each block have been created, the surface grid generation is completed. Several
faces of the completed seven block F-16 test case are shown in Figure 7. The final step
in GRIDGEN2D is to save the multiple block surface file, referred to in Figure 3 as the
SURFGRID file, and to run the GRIDGEN3D preprocessor. This preprocessor is accessed from
the GRIDGEN2D menu and creates the job control language (JCL) and input data needed to
start the volume grid generation on the CRAY.

Figure 7. Completed Seven Block Grid about F-16 Forebody

VOLUME GRID GENERATION

The fourth and final step of the grid generation process is the distribution of grid
points within the interior of each block. This task is performed with the batch
procedure GRIDGEN3D, the only one of the four codes written for a CRAY supercomputer (see
Figure 3). The philosophy behind the development of this batch procedure has been to
utilize as much of the high speed and large core memory of the CRAY as possible,
since these features aren't available on today's affordable workstations. Thus, the
number of blocks is minimized in order to maximize the vector lenqth of each calculation.



An additional benefit of using fewer and larger blocks is that the number of block
interfaces is reduced. When the blocks sizes are large, however, the surface grids must
be of sufficiently high quality, so that special treatment of the block interior points
is not required. GRIDGEN3D, therefore, operates on the premise that the user has
carefully utilized GRIDGEN2D to produce good surface grids. When a small number of
blocks is used to discretize a domain, it also becomes necessary to allow for multiple
boundary-condition and interface types on each face, which adds to the complexity of the
code. We have considered this problem to be tractable, however, in light of the
computational efficiency offered with large blocks.

Naturallv other researchers have taken different approaches to volume grid
generation. Seibert (ref. 16), for example, manages to perform edge, surface and volume
grid generation within a single code. The advantage of this approach is clear; both
overlap time and the transfer of files between codes is eliminated, greatly simplifying
the process. On the other hand, Thompson's EAGLE code (ref. 17) was originally designed
as a CRAY batch procedure for both elliptic and algebraic surface and volume grid
generation. The advantages of EAGLE are that the batch procedure is more easily
understood and applied, and that the computational time required for grid generation is
reduced. The GD grid programs are a compromise between these two disparate approaches;
the user intensive tasks such as surface grid generation are performed using interactive
procedures on a workstation and the number crunching of volume grid generation is
performed on a supercomputer using GRIDGEN3D.

User-friendliness is as much a part of GRIDGEN3D as it is a part of the interactive
grid programs. In fact, it was easier to build user friendliness into GRIDGEN3D because
it is a batch procedure with a uni-directional flow of operations. GRIDGEN3D was written
in as general a manner as possible for easy application to a wide variety of
configurations. No assumptions are made in the code concerning the grid topology or the
orientations of the computational indices. A variety of robust grid generation methods,
similar to those used in GRIDGEN2D, are available in GRIDGEN3D, and each method has been
formulated to account automatically for point or line singularities. A great deal of the
user friendliness of GRIDGEN3D comes from the minimal amount of input needed to compute a
volume grid. As mentioned earlier, a preliminary GRIDGEN3D JCL file can be created while
still in GRIDGEN2D. Default values for all inputs are based on data from the BOCON file
and each input is checked for consistency with its related input variables. CRAY
procedures have been written for the JCL to minimize the mechanics of running the code;
only six or seven lines of JCL are currently required.

The grid generation methods in GRIDGEN3D are the volume equivalents of the surface
methods employed in GRILAEN2D. Algebraic transfinite interpolation with either linear or
arclength (ref. 7) based interpolants is used to provide an initial volume grid. In
many cases the volume grid produced using the arclength interpolants is sufficient (since
the surface grids are generated with careful attention to quality) for flow calculations.

In the event that further refinement of the provisional volume grid is necessary, an
elliptic pde grid solver is available in GRIDGEN3D. This solver may be run with any of
four different control function types, in order to help the user meet his requirements
for smoothness, clustering, and orthogonality. A smooth grid may be obtained using
either the LaPlace control functions or by smoothing the control functions in the
existing grid. The control functions of Thomas and Middlecoff (ref. 13) are used
whenever interior clustering is required. Finally, the Sorenson control functions (ref.
14) can be used to maintain orthogonality and clustering at user-specified faces.

When running the elliptic solver, grid line slope continuity is maintained at block
interfaces by moving the face, edge, and corner points where indicated by bc data from
the BOCON file. To provide boundary point movement, a single layer of ghost points is
saved around each qrid block. On the portions of the faces corresponding to connections,
ghost points take on the coordinate values of the grid points immediately inside the
connecting block. This allows central differences to be used when grid points on the
interface are moved. Edge and corner movement also uses the ghost point coordinates, but
employs a one-sided approximation for the mixed derivative terms.

A parametric elliptic solver similar to the one in GRIDGEN2D has also been developed
for volume grid generation (ref. 11). In this method, new grids are generated in terms
of the computational indices of the original grid, which lends itself to adaptive grid
applications quite naturally. To generate an adaptive grid, flowfield data from a
partially converged steady state solution is used to form a control function that
clusters grid points to flow field gradients, such as shock waves. This method is still
under development, but is planned to be incorporated into GRIDGEN3D in the near future.

GRIDGEN3D reports the quality of the volume grid to the user by tallying the number
of positive, skewed, and negative volume cells in the grid and by computing a measure of
the grid quality as defined by Strang (ref. 18). Using this data the user can plan
further GRIDGEN3D runs. The volume grid can also be transferred from the CRAY to the
IRIS so that it may be visually examined using the GRIDVUE3D graphics program (see Figure
3). Within GRIDVUE3D, planes of constant computational coordinate may be scanned in
real-time, providing a first hand confirmation of grid quality. A unique feature of
GRIDGEN3D is its ability to translate the BOCON data into a boundary condition file
(known as the FLOWCON file) for use with one of its associated flow solvers. Since
setting up the boundary conditions is an error-prone and man hour intensive task, this
feature of GRIDGEN3D results in a large time savings. This FLOWCON file and the
resulting volume grid (VOLGRID) file are generally the only significant inputs needed to
begin running the flow solver (See Figure 3).



FUTURE PLANS

The grid generation methods described above have proven to be effective tools in the
application of CFD to the aircraft design process. For example, the sample grid shown
throughout this paper could be generated today in about a week. Although this time is a
vast improvement to the Etate of a couple of years ago, it is still significantly
longer than that needed for complete integration of CFD into the design environment.
In order to meet this gual, several improvements are planned for our methods. The
near term improvements will fit within the four code framework we have established
and are described below.

GRIDBLOCK, the most preliminary of the four codes, is considered a major key to
faster turnaround. Improved drawing and edge manipulation commands are continually
implemented. Nevertheless, complicated blocking structures are still difficult to
visualize because of the complexities of typical aircraft geometries. Therefore,
semi-automated domain decomposition methods are being investigated. Automated domain
decomposition methods have already been proven (ref. 19) for certain applications, and it
is believed that such methods in GRIDBLOCK would reduce time spent in that code
considerably. Work is already underway to allow GRIDBLOCK to determine complete
blocking structures automatically for certain classes of airplane topologies (e.g.,
wing, wing-body, etc.). This capability will be most instructive to the novice user, who
may have no idea how to devise a suitable blocking scheme. After a blocking
structure is automatically generated, the user can interactively modify the structure,
adding refinements or changes as required.

The GRIDBOUND code has proven to be an easy code to understand and to use.
However, since it is sometimes difficult to recognize blocks by their computational
representations (see Figure 4), the GRIDBLOCK and GRIDBOUND codes will eventually
be combined into a single code. The user will be able to toggle between physical (x,y
and z) and computational representations of the multiple block systems. As edges are
combined to form blocks in GRIDBLOCK, they will automatically be written to the BOCON
arrays. By examining how edges are shared between blocks, the majority of block
connections can be detected automatically by the code.

GRIDGEN2D is clearly the most extensive of the four codes used for multiple block
grid generation. There are no specific improvements planned for GRIDGEN2D, although
slight modifications are continually being made on user suggestions.

GRIDGEN3D will continue to be the batch volume equivalent of GRIDGEN2D. However,
the volume grid generdtion process will be greatly simplified by removing the CRAY
specific coding from GRIDGEN3D. This will allow GRIDGEN3D to be run on a workstation
along with the three other grid codes, eliminating the need for file transfer and
conversion procedures. The simplification of the overall four step grid generation
process should more than make up for the loss in computing speed. In order to enhance
the grid generation procedures within GRIDGEN3D, the adaptive methods described in the
body of this paper will also be incorporated into the code.

The long term plans for our grid generation methodology are much harder to project
because they are dependent upon advances in computer hardware and software. Already the
dividing lines between the codes are overlapping. For example, definition of edges can
be performed both in GRIDBLOCK and GRIDGEN2D. Eventually, this gray area will be removed
by combining the four codes into one unified, interactive code. This implies, of course,
that workstations will have grown enough to allow core memory to contain all of the
blocking, connectivity and grid point data simultaneously. Also, the workstation CPU's
will have to become fast enough to make interactive volume grid generation
practical. A single unified code will signifi-antly streamline the process, allowing the
user to maintain his train of thought by eliminating much of the dead time needed now
foi transfer of files between codes.

As intimated earlier, the biggest challenge in generating a multiple block grid
system is in suitably decomposing the domain into blocks. in fact, in many applications,
a sizable portion of the grid generation process can be automated once the blocking
structure is determined. It will therefore be prudent to investiGade methods for
automating the domain decomposition process as well. Artificial intelligence (AI)
methods continue to gain in popularity and applicability, and have recently been used for
two-dimensional domain decomposition (ref. 20). Progress in this field is certainly
worth watching carefully. AI methods may also find their way into the volume grid
generation arena, whereby an expert system could control the elliptic pde solver to
obtain grids which meet or exceed predefined quality measures. Finally, as new control
function formulations, pde solution algorithms, and adaptive grid strategies are
developed, they will be incorporated into the code.

CONCLUSION

A structured, four code approach to multiple block grid generation has been
developed for use in an aircraft design environment. Three of the four codes are
interactive graphics procedures which give the user the ability to decompose a flowfield
domain into multiple blocks, specify inter-block connections and flow solver boundary
conditions, and generate grids on each of the six faces of each block. Generation of
grids on the interior of each block is performed usino a batch procedure that is run on a



supercomputer. These four codes generate multiple block grids for use in solving the
full Navier-Stokes equations about complex aircraft. Their greatest utility is
their emphasis on interactivity and graphical feedback which allow high quality
grids to be generate with a minimal effort. Improvements are continually sought to
increase the speed of the grid generation process. Most of these improvements involve
methods of grid generation automation, and are expected to reduce the time needed to
develop a multiple block grid system even further.
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Summarv

A multiblock grid-generation procedure emuedded in a numerical flow simulation system is described.
Major features of the grids are: suitable for complex aerodynamic configurations; grid lines continuous,

in particular, over block faces; grid lines not slope-continuous over block faces; topology and geometry
of block decomposition first specified, and then grid-point distributions; application of transfinite
interpolation and elliptic techniques.

It is possible to construct multiblock grids around complex configurations witi 250-1000 blocks, and

to compute (Euler) flows on such grids.
New technical concepts are proposed, to improve the accuracy of the flow simulation results, and to

reduce manhour investments in the 7onstruction of multiblock grids. These concepts concern a. the use of
compound faces and edges, and b. the application of grid refinement per block and per coordinate
direction, to remove the constraining effect of grid-line continuity on grid-point-density cont.ol; c.

the use of new techniques for analytic aerodynamic geometry modeling, to reduce the dependence on non-CFD
geometry software packages; d. tne control of grid quality and acceptability with weight functions In the
independent variables of the 3D vector functions defining thE geometrical shape of edges, faces and

blocks, and e. use of hyperblocks to speed up the block decomposition.

1. Introduction

The purpose of this paper is to present the current status of the grid-generat on researci. P-d

development work at NLR and AIT, to report about practical experiences with the current grid-generation
procedure, and to outline improvement plans now in execution.

The aim of the current grid-generation activities at NLP and AIT (NLR cooperates also closely with

Pokker) is to provide computer codes for the construction of grids for Euler-flow calculations around 3D

coriplex aircraft configurations. Propeller-slipstream simulation for transport aircraft is of particular

iicerest. Fisuring growth-potential of the grid-generation codes for NaS (Navier-Stokes) flow

calculations is also of importance.

The material of this paper is presented as follows.

rn section ., grid-generation is analyzed as a subtask in CFD calculations for industrial aerodynaric
design tasks or for aerodynamic research tasks. Here, user-requirements for a grid-generation procedure
are analyzed from thi- viewpoint.

Section 3 is a technical description of our current grid-generation procedure.

Section 4 is a report of important experiences with this grid-generation piocedure.
"ection is a summary of new technical concepts tha- may be used to improve the grid-generation

procedure.

Section 6 is a summary of conclusions.

The grid generator described here produces multiblock grids, and not unstructured grids. The choice
issue involved here, is briefly discussed in section 2.4 (Ratioualisation of technical choices), and in

the references mentioned there. Further, our expectation that algebraic mesh tuning techniques can

perhaps be made more efficient than elliptic mesh tuning techniques is discussed in section 5. Adaptive
gri!- generation is not discussed here, except that from the remarks in section 5 conclusions can be drawn

abouL the way how growth potential in this direction is secured.

2. The design of a grid-generation procedure

2.1 Grid-generation as a subtask in CFD calculations

The construction of grids is the first subtask in a numerical flow simulation. In our case, the

subtaska of a numerical Eule. (or NaS)-flow simulation are those of figure 2.1,

topological block decomposition
geometrical block decompos

4
tion grid construction around a given aerodynamic configuration,

generation of multiblock grid

flow simulation, and
visualisation of flow.

The grid-generation procedure is thus subdivided in three closely related subtasks. At the input side,
this procedure accepts arbitrary aerodynamic configurations, e.g. aircraft configurations for
propeller-slipstream simulations. At the output side, grids that can be accepted for numerical flow

simulations have to be produced.

2.2 User-requirements modeling for grid generators

When a grid-generation procedure must be designed, the first step is to carefully prepare a list of

use-requirewents for this procedure. This user-requirements list is a basis for the formulation of
rational balanced answers to a variety of questions. These user-requirements are a specification of:



- which aerodynamic grid-generation functions have to be possible with the grid-generation procedure.
- what classes of aerodynamic configurations are specified as input (e.g. aerofoils, wings, aircraft

parts, complete aircraft), how these are defined (e.g. point collections with/without interpolation

rules), where they are generated, etc..
- which structure and properties the grids should have that are produced at tire output side, how their

quality Is defined and measured.
- what acceptance criteria must be satisfied (e.g. manhour investments required for the construction

of a grid of acceptable quality, grid-smoothness properties, etc.).
The analysis of these user requirements involves an estimate of what technical resources are available to
implement the required functions in a grid-generator code. These resources are e.g. numerical
grid-generation methods, and available computer/network/workstation configurations.

2.3 User-requirements for grid-generators

Figure 2.1 illustrates that, at the input side of the grid generation task, one has to obtain given
aerodynamic surface configurations, including those for complete aircraft. These surfaces are smooth,
except at edge lines, and a few vertex points.

Aerodynamic-surface data can be delivered (via file interfaces) from a large variety of ources,
e.g. data bases in different software packages (SIGMA, AEROLIS, GAMMA, COMPVIS, CATIA, PATRAN), which are
operational on different computer systems with different operating systems. Further, these data on files
are usually in various formats. This wealth of possible input sources has requirements as a consequence.
- Any aerodynamic 3D configuration must be acceptable as input. In particular, the grid generator code

must have excellent means for the representation of the geometric shape of aerodynamic aircraft
surfaces.

- This input must be acceptable from any source, via a standard input file.
This standard input file has a very simple format, so that writing small conversion programs for bringing
geometrical data into the format of this file requires negligeable effort.

At the output side of the grid-generation task, multiblock grids are produced. User requirements for
this output are as follows.
- The grid boundaries should approximate with sufficient accuracy the geometric shape of the flow

boundaries.
- The auajit of the grids should be such that discretisation errors of flow-simulation results, which

are due to the grid, can be made smaller than an arbitrary user-specified upper limit.
- The grid-generation procedure should be loosely coupled to the flow simulators (Euler, NaS).

Mtartlng point for a definition of grid quality and acceptability is the control of discretisation
error, o. Ilow-s'lmiLtion results. Ideally, discretisation errors should be smaller than user-defined
,pper-llmft '.lutes, and the grid should allow this. This leads to quality and acceptability criteria for
4rid data, like

mesh ,i/es (In principle, it should be possible to make mesh sizes arbitrarily rmall, by
enrichnent) ,
rid-variatlon (including slenderness and shewness variation), and

* I ,al 6rld smoothness in the flow domain.
Two ,nluslon follow from qimple asymptotic error analyses of discretisations of equations.
- Ti perrit, that local discretisation errors can be made smaller than any small predefined upper

limit, enrichment (ivtrease of the total number of grid points in a fixed flow volume, e.g. a block)
!as to be pssible, to any degree. A grid is said to have sufficient quality if, everywhere on the
gr!d, the local discrettsation errors can be made smaller than a small predefined limit value.

- Further, for a given fixed total number of grid points in a given fixed volume, the grid is
acceptable from the point of view of discretisation efficiency, if the local cell shapes vary over
the volume in such a wav that a roughly uniform distribution of discretisation errors of simulation
result, , .obtained, because usually this will be optimal. Optimal error variation in a given flow
donslin volume fr r a given number of grid points is thus an economic acceptability criterion.
Ihe notion o1 local grid smoothness deals with the conditions under which discrete eqitt!.ns are

'eond-order accurate. I'sually, during a consistency and error analyses of discrete equations, it is
required that the grid is sufficiently smooth. It has to be so smooth that the local 2nd-order accuracy
of discrete conservation equditions and boundary conditions is not destroyed by too much variation of the
grid. This sets limits to mesh stretching and a few other functions describing 2nd-order behaviour of the
grid. When grids are varvng, suiticient grid smoothness is thus a second acceptability criterion.

An other fip,,rtant acceptability requirement Is that it should be possible to produce blocked grids
around complete aircraft by an experienced CFD specialist in about two working days. This requirement is
not vet met hv us with our current mean,, se,- table 2.1.

Suhtask In Fuler-low simulation k(coDE) NASA-langley FION F50 G222
wing-nacelle-

propeller

topological block decomposition (PATRAN, GAMMA) 4 weeks 3 weeks 2 weeks 8 weeks
geometrical block decomposition (GAMMA, AFROIIS) 4 weeks 3 weeks 2 weeks 8 weeks
generation o .ulliblock grid (E(;RI)) 4 weeks 2 weeks 2 week:; 8 weeks
one Euler-flow 7timulation (ESOIV) week week I week -
one visualisatiton of results (VISil3D) week week week -

Table 2.1 Rough estimates oi amounts of manpower investments, spent to suhtasks in executed
Fuler-f low '1mulat ions

This table explains one reason why our current development and research efforts are concentrated on
improvement oi the Puler-ilou simulation system in the area of aerodynalmic-geometrv handling and grid
generation. Grid desi;n requires too much manpower compared to the other subtasks in numerical flow

simulat ion.



Other acceptability requirements for the grid generator procedure are the following ones.
Interactive options for the manipulation of aerodynamic surfaces in the grid-generation prccedure
(grid points on configuration surfaces should remain on those surfaces when their position is
shifted).
Tuning of the quality of acceptable grids on coarse grids on workstations, and tuning of
corresponding fine grids in batch on a supercomputer.

2.4 Rationalisation of technical choices

Based on user requirements formulated in section 2.3 (in fact, these define only what input and
output of the grid generation process is desired), a preliminary technilal design of a grid generation
procedure was prepared, [1,2]. Thereby, a choice between varios alternative grid-generation techniques
and related technical issues had Lo be rstion.lized. Our considerations and decisions were summarized in

[3], see also El].

2.5 Test library

To test the grid generation procedure under development, a library of test cases is defined. This
library consists of a few aerodynamic configurations which complexity is estimated to be representative
for what one may encounter in aircraft-design and in aerodynamic research environments. Included in this
library are a few full transport aircraft configurations or important parts of them,
- the NASA-Langley propeller-nacelle-wing configuration, [4],
- the FIOO and F50 aircraft configuration (c.f. [9]), and
- the AIT C222 configuration.
See figure 2.2 - 2.4.

3 Technical description of the grid-generation process

The grid generation procedure is based on the application of the following technical concepts.
1. Flow domains are made finite. Grids are made boundary conforming.
2. A multiblock approach is applied.
3. The block decomposition of the flow domain around a given 3D aerodynamic configuration is done in two

steps.
a. First, the topology of the block decomposition is defined. Purpose of this step is the construction

of topology tables that describe how the vertices, edges, faces, and blocks in a block
decomposition are connected to each other, and what are the positive directions of curvilinear 3D,
2D, or ID, boundary-conforming coordinate systems in blocks, in faces, and in edges, respectively,
see [5,6]. In this stage, it is possible to work with very rough geometric approximations of the
true geometric shape of aerodynamic configuration surfaces, so that e.g. the geometry software
package PATRAN can be used. (However, see the remarks in section 4.) Data sizes are relatively
small, in this stage.

b. In the second step, given these topology tables, the corresponding geometric shape of the blocks
and its faces and edges, and the position of the vertices are defined.
In particular, the geometric shape of block faces on the aircraft configuration are defined from
the given input of the grid generation procedure. This geometric shape is stored in the form of
function prescriptions (not: points to be Interpolated in an unspecified way).

L.ogicall,, we consider these two steps as strictly sequential, so that data for the geometric shape of
block faces, edges, and vertices are defined on top of data for the topology stored in topology
tables. Below it will become clear that this hierarchical data structuring is used to obtain simple
geometry-definition procedures for large numbers of block vertices, edges, and faces in the flow
domain.

4. Blocks are packed block-face to block-face, without gaps or overlaps. Algorithms in flow simulators
for the coupling of flows over block faces may thus be based on 2D data structures, which offers good
opportunities for vectorisation and parallellisation of algorithms.

5. The geometric shape of each block face (including those on given aerodynamic configuration surfaces)
iF d-lined by given functions of two parameters. These functions define smooth block-face surfaces.
The function prescriptions are required in the grid generator, when grid points in given block-face
surfaces are computed.

6. Transfinite interpolation is used to initialize grid-point distributions, see point 9 below.
7. Elliptic grid-generation, wit0 user-controlled scaled dimensionless weight functions for mesh-size

tuning, is used to tune a grid, see [1,3,5,6], and point 9 below.
8. Grid lines qre made continuous over block faces and over block edges, but not slope-continuous, see

figure 3.1. When the grid would be required to have more smoothness o',er block-faces, this would
simplify the grid-generatlon and flow simulator algorithms, because a number of special algorithms at
block faces are then no longer needed. However, in such cases, the control of the acceptability and
quality of the grid near corners like that of figure 3.2 will usually become a problem. A rigorous
solution is not to require slope-continulty. The corresponding complications in the numerical
algorithms in the flow simulator can be solved by standard numerical techniques, [7,8].

9. A further advantage of requiring only grid-line continuity over block faces and face edges is that the
grid-generation procedure may be decomposed into a sequence of three substeps. This decomposition
offers good options for controlling grid quality and acceptability (as defined in section 2.3)
locally, in a sence made precise in puint 1O.f. The substeps are as follow.
a. First, the grid in the interior of each block-edge curve is constructed, with the two given vertex

points kept fixed. For each edge, a 3D vector function defining the geometric shape of the edge
curve, is given. The grid points on the edge interior are usually defined by an elliptic technique.
Thereby the grid points are shifted along the edge curve to desired locations, specified by a
given, user-defined, positive weight function w(F).

b. In the second step, the grid in the interior of each block-face surface is constructed, with the
grid in each edge curve known now. For each face surface, a 3D vector function defining the
geometric shape of the face surface, is given. To obtain an initial grid in the face, transfinite
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bilinear interpolation in the two independent variables of this vector function is applied. Thereby

the independent-variable values at the given grid points on each of the four face edges are

bilinearly interpolated to independent-variable values at interior grid points in the face. These

are subsequently substituted in the vector function prescription to obtain the grid points on the

face. Usually, in a large percentage (say, 80%) of the block faces, this transfinite interpolation
procedure produces in faces acceptable grids of sufficient quality.
When the grid in a face produced by the transfinite bilinear interpolation is unacceptable or of

insufficient quality, elliptic mesh tuning is subsequently applied to define in the face the grid
point distribution, using two partial differential equations (these are particular forms of
spri.;-analogy equations) to define the required independent-variable distributions.

c. In the third step, the grid in the interior of each block volume is constructed, with the grid in
Pacb of lhe six blocks faces known from step b. In each block, to obtain an initial grid, trilinear
transfinite interpolation in the given grid points on the six block faces (defined in step b) is
applied, with the computational coordinates (E, n, ) f [0,1I

3 
in the block volume as independent

variables. Usually, this produces in nearly each block acceptable grids of sufficient quality. In
blocks, where this is not the case, the grid points are defined by solving subsequently three
elliptic partial differential equations (c.f. [3,6,71 for details about their definition).

1O.Analysis of the structure of this 3-step grid-construction process, first in edges, then in faces, and
finally in blocks, shows that various easy understandable mechanisms are available to control the
acceptability and the quality of the multiblock grids to be produced.
a. For a given block-decomposition topology, Lhe position (in the flow or on the aerodynamic

configuration) of each vertex point can be arbitrarily defined within usually wide limits.
b. The geometric shape of each edge curve segment can be arbitrarily defined, between its two vertex

points. In our algorithms, a straight line segment between the two vertex points is the default
edge shape.

c. The geometric sLapc of each face surface segment can be arbitrarily defined, between its four edge
curves. In our algorithms, a bilinear transfinite fit between the four edge curve segments (these
can thus be completely arbitrary continuous curves) is the default face shape.

d. Given the topology of a block decomposition of a flow domain, there is thus much flexibility in
using the block-decomposition geometry for the control of the acceptability and quality of the
multiblock grid constructed on top of it.

e. Because it is required that grid lines are continuous over block faces and over face edges, there
exist tight relations between the total number of grid lines in the various computational
coordinate directions in the blocks, the faces, and the edges, which constrains the control over
grid quality.

f. However, in each edge, for each given total number of grid points in the edge, the distribution of
the grid points can be completey freely chosen. This offers thus good options for local mesh tuning
in edges.
Similarly, in each face, the distribution of the grid points in the face interior has only to be
matched smoothly to the grid point distributions in the four edges. And in each block, the
distributions of the grid points in the block interior has only to be matched smoothly to the grid-
point distributions in the six faces.

g. A grid in an edge defines only the grid in each face and block which has that edge on its boundary.
,ut the grid in the other blocks and faces is completely independent of the grid in that edge. This
property offers the posibility to adapt grids only locally, by modifying the geometric shape of
that edge, and/or the grid-point distribution in that edge.
Similarly, modifications in the geometric shape of a face, and/or the grid-point distributions in a
face or in a block, change a grid only locally. This 'locality' property is extremely useful when
improving grids, by manual interaction for example.

II.A summary of the various mechanisms for the control of the acceptability and quality of grids is
listed in the table below.

Vertex-point positions,
manipulation of block-decomposition

edge-curve shapes,

geometry (of given topology).

Numbers of grid points, per coordinate direction
(constraining effect of grid-line continuity).
Grid-point-distribution control from edges into faces into blocks, using user-defined positive
dimensionless weight functions, in edges, and in faces and blocks only if required.
Three-step procedure: edges - faces - blocks.
Grid-control is local.

4. Experiences with the grid-generator procedure

From experiences with the grid-generation procedure with the aerodynamic configurations listed in
table 2.1, it was found that the procedure satisfies most requirements of section 2.3 (User requirements
for grid generators.) It is possible to construct multiblock grids around complicated 3D aerodynamic
configurations, and Euler-flow calculations including propeller-slipstream simulations can be made with
success.

A few examples of constructed grids are presented in figures 4.1a through d.

Strong points of the grid-generation procedure were found to be the following.
I. The face-to-face packing of blocks (without gaps or overlaps) and the continuity of the grid lines

over block faces and over face edges leads to simple data structures in the grid-generator code and in
the flow-simulator code.

2. The advantages of requiring only grid-line continuity over block faces and over face edges, and no
more smoothness, seem to outweight the disadvantages. Advantages are the points 3-7 below.

3. Control of grid acceptability and grid quality (resolution), by manipulation of the given geometrical
shape of faces and for edges, and of the rcsitlon of vertices, has been used several times, and turned
out to be useful.



4. Similarly, control of grid acceptability and quality by the weight functions in the elliptic

0 id-generation procedu.e produces usually acceptable grid-point distributions.
5. The default rules for the definition of the geometric shapes of block edges and of block faces

(section 3, points 10.b, 10.c), which do not require user-input of geometric data, are in practice
often applicable, and thus very useful.

6. In most faces and in most blocks, bi- and trilinear transfinite interpolation produces acceptable
grids of good quality, when the grid points in edges have been correctly distributed by an elliptic
method. Here, most faces and blocks means of the order of 80% of the faces and all blocks. This
procedure is succesful when independent variables in the function prescriptions for edges, faces, and
blocks are correctly tuned to each other. Grid tuning with the comparitively expensive elliptic
methods can thus be avoided in the vast majority of blocks and faces.

7. The 'locality' property (section 3, point 10.g) of the control mechanisms for the constrcution of
acceptable grids of sufficient quality turned out to be very useful, when grids had only locally to be
improved.

The grid generation procedure needs also improvement.
1. Definition, modification, and other manipulations of the topology and geometry data of a

block-decomposition of a flow domain around a complex 3D aerodynamic configuration turned out to
require much manpower, and to contribute significantly to long turnaround times for grid generation.
The software for topology definition (PATRAN) and for subsequent geometry definition (SIGMA, AEROLIS,
CATIA, etc.) can be used. However, PATRAN cannot handle aerodynamic surfaces with sufficient accuracy,
and slight topology changes produce large changes in topology data. The other geometry software
packages were found to have a high user threshold for CFD specialists. It was concluded that much
shorter turnaround times for the construction of block decompositions will require special software
for the integrated definition of topology and aerodynamic geometry data, to be handled by CFD
specialists.

2. The requirement of face-to-face packing of blocks leads, in most applications with complicated
aerodynamic configurations, to a large number of blocks with relatively small block volumes. For a
complete aircraft, the number of blocks is of the order of 500 - 1000. The manipulation of this amount
of blocks (and of a similar amount of vertices, edges, and faces) during block decomposition and grid
generation is cumbersome. Further, because block volumes are relatively small, even on fine grids the
total number af grid points per block becomes also relatively low (say, of the order of 203), so that
vector operations (usually, only inner loops of nested loops are auto-vectorized) become slower than
desired. Hence, it is desired to enlarge block volumes, to enhance vector performance in the flow
simulator, and to reduce at the same time the total number of blocks, faces, edges, and vertices, to
reduce the administrative tasks of a grid designer.

3. Further it was found tha't the mechanisms for the control over the quality of grids requires
considerable improvement, to eliminate accuracy and approximation-efficiency problems with
flow-simulation results. To explain how this arises, observe first that the requirements of
face-to-face patching of blocks and of continuity of grid lines has as a consequence that, in complex
3D block decompositions, many grid lines are continuous through chains of blocks from e.g. flow
boundary to flow boundary. Of course, grid-cell volumes are chosen small in blocks with high flow
gradients (near wing leading and trailing edges, inlet lips, etc.), which leads to high grid-point
densities in blocks covering such regions. But because grid lines are continuous over block faces,
this high density is also propagated into other blocks where this may not be required, e.g. outer-flow
regions near infinity. In order to prevent too dense grids in such outer blocks, designers make
compromises by accepting, in blocks which should have dense grids, grids which are locally too coarse,
so that here flow-simulation results are locally to inaccurate. Hence, there is a need for grid
refinement/coarsening over block faces, like illustrated in figure 4.2, where grid lines can terminate
on block faces, so that they do not propagate into blocks where a smaller grid-point density is
sufficient for good grid quality.

4. When the grid-point densities in different blocks are strongly related to each other due to a
continuity requirement of grid lines at block faces, grid designers spend (too) much manhour time in
manually optimizing stretch-factor behaviour and other second-order behaviour of the grid-point
distributions, to prevent large variations in grid-point densities over a block volume.

5. Sometimes grid folding is encountered. Efficient repair by an ad hoc procedure is usually possible, if
the folded region can be quickly detected and visual inspection means are available for analysis.

6. The coupling between the grid generator code and the visualisation code can be made loose (two
differeit computer codes in one Job-control loop, coupled by files). This situation is excellent from
the point of view of task decomposition, but a more tight coupling is necesscry from the point of view
of the man at the workstation/terminal.

5. Improvements

5.1 Introduction

The block-decomposition/grid-generation procedures, and the corresponding procedures for the
manipulation of surfaces on aerodynamic configurations and in the flow, are given the desired properties
by introducing new data structures for multiblock grids, and new algorithms for block decomposition and
grid generation. The new technical concepts are sketched in sections 5.2 - 5.6 below.

5.2 Elementary and compound blocks, faces, and edges

When blocks are packed block-face to block-face, a collection of blocks, faces, and edges is
obtained. These blocks, faces and edges may be called elementary, to distinquish them from another kind
of blocks, faces, and edges to be introduced below. Such collections of elementary blocks can be
described both topologically and geometrically by simple mathematical constructions, which can easily be
mapped in computer codes. Exactly this simple structuring is also the reason why elementary-block
subdivisions are insufficiently flexible for control of the accuracy of flow-solver results, and why
vector lengths are relatively short. Is is thus necessary to generalize, to eliminate these problems.
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A mathematically well-structured approach is obtained when unions of elementary blocks, faces, or
edges are allowed to be combined into a new so-called compound block, face, or edge. Moreover, the
concepts of an elementary block, face, and edge have to be generalized somewhat. The definitions of these

entities are now as follows.
a. An elementary edge is a curve segment in space, with the topology of the unit interval, with two

vertex points as its end points.
b. A compound edge is the union of two (element-ry and/or compound) edges, joined together at a common

interior vertex point.
c. An elementary face is a surface segment in space, with the topology of the unit square, with four

(elementary and/or compound) edges as its boundary.
d. A compound face is the union of two (elementary and/or compound) faces, joined together at a common

interior (elementary or compound) edge. This union should also have the topology of the unit square,
and have four edges.

e. An elementary block is a volume segment in space, with the topology of the unit cube, and with six
(elementary and/or compound) faces as its boundary.

f. A compound block is the union of two (elementary and/or compound) blocks, joined together at a common
interior (elementary or compound) face. This union should also have the topology of the unit cube, and
have six faces.
Conceptually, the generalisation is nothing else than that each union of elementary blocks, having

also the topology of a unit cube, is accepted as a new compound block. Further, each union of elementary
faces having the topology of a unit square, is also accepted as a new compound face, and each union of
edges having the topology of the unit interval is also accepted as a new compound edge.

It will be evident from the definitions that each compound entity (block, face, edge) may be
decomposed into a union of elementary corresponding entities via binary-tree data structures, with
elementary entities at the leaves, and compound entities at the nodes.

Using compound entities, it is possible to greatly reduce the chaining effects in elementary-block
decompositions, because a block face may now terminate in an interior edge of a compound face of an
adjacent block, without propagating into that block due to a requirement of a block-face to block-face
packing. This feature allows grid designers considerably better control over the geometrical modeling of
blocks and the positioning of blocks with respect to each other.

5.3 Grid refinement per block and per computational-coordinate direction

Compound blocks are necessary but not sufficient to realise sufficient control of grid point
densities. In addition it is necessary to allow that, in each block, the grid point density can be
defined practically independently from that in adjacent blocks.

This requirement raises the question how the grids and the flow states in two different adjacent
blocks should be related to each other at a common face. To analyse this question, two extreme cases are
considered first.
a. When each grid line is continuous from one block over the common face into the other block, the data

structures for grid geometry and flow states in each of the two blocks are closely related to each
other. They can in fact be related to each other in computational space using topology data, because
the grid-point multi-indices in the two blocks can be mapped onto each other by a linear relation.
However, the advantage of the simplicity of this mapping is at the same time a constraining factor,
because, near the common face, the grid-point densities in the two blocks are about equal due to this
linear mapping.

b. When the grids in the two blocks at each side of the common face would be completely unrelated,
grid-point multi-indices of the two grids must be related to each other in physical space via the
geometrical position of grid points in the common face. This involves complex search procedures, and
produces a, in general very nonlinear, relation between the grid-point indices of the two blocks. The
advantage of complete freedom in defining grid-point density in each block is thus obtained at the
cost of this nonlinear multi-index relation.
A reasonable compromise between these two unattractive alternatives is to keep the property that

drid-point multi-indices of the two grids are mapped onto each other by a linear relation, but to allow
grid-point densities over faces to increase or decrease, by applying grid coarsening/refinement over
block faces. See figure 4.2 for an illustration. The coarsening/refinement is allowed independently in
each of the three computational directions. Of coarse this presumes that in the solver special
block-coupling algorithms are available, that are conservative, and in general second-order accurate.

5.4 Numerical aerodynamic geometry modeling

As discussed in section 4, it became recently clear that numerical aerodynamic geometry modeling in
the block-decomposition/grid-generator codes is required because, for CFD specialists, the user threshold
of current geometry software packages is very high, and the required functionality for Euler and NaStokes
flow calculations is not available (e.g. double curved surfaces in the flow).

Face surfaces are defined by control-point distributions, arranged in 2D arrays, which are
interpolated to a unit-normal continuous face surface, by patching together transfinite bicubic Hermite
polynomials, one for each patch spanned by four control points.

It is important to observe that a unit-normal continuous surface may be represented by an
interpolating function with weaker continuity than Cl-continuity. This fact may be exploited to optimize
the qualitative behaviour of the curvature of the surface represented by the Hermite polynomials. This
optimalization is aerodynamically useful.

This approach, whereby a face surface is represented by patched bicubic transfinite Hermits
polynomials interpolating a 2D array of face-surface control points, may be compared to approaches, in
which an underlying analytic surface definition from a geometry software package is used, which must then
not be compromised during multiblock grid generation. We consider our approach as more efficient and
flexible because, in the flow solver, aerodynamic configuration surfaces are approximated anyhow by grid
point distributions. It has then no sense to stick to a unique aerodynamic-surface definition in the
block-decomposition/grid-geoneration process when this is cumbersome, provided the CFD specialist is
offered full information about and control over the geometrical approximations he is making during the
manipulation of aerodynamic surfaces.
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Another important topic concerning aerodynamic geometry modeling is that of natural (i.e. physically

relevant) independent variables (parameters) in the 3D vector functions defining the geometrical shape of

an edge curve or of a face surface.

It was found that, during grid generation in a face, usually good grids could be obtained, using

only transfinite bilinear interpolation, if the grid-point distribution in each of the four edge curves

of the faces was appropriately defined. In each of the four edge curves, the corresponding distribution

of the independent variables in the 3D vector functions for the face geometry are then also known. A grid

may then be defined in two steps. First, in the face interior, a uniform distribution of the two

independent variables between their edge values is defined using bilinear transfinite interpolation in

the independent variables on the four edges. Next, each pair of independent-variables values of this

distribution is substituted in the 3D vector function for the face geometry, to produce a grid point in

space on the face.
This procedure fails when the independent variables in for example two opposite edges are

differently defined, for example, arc length in one edge, and control-point index in the other edge with

a very non-uniform control-point distribution. In such a case, the above procedure may produce unexpected

distributions of grid points in the face.

In order to prevent such unexpected behaviour, it is necessary to use geometrically meaningful

independent variables. They are called here natural variables (or parameters). Arc lengths along

parameter lines are expected to be a good choice in general, but other choices may occasionally be also

useful.
The use of natural parameters and multi-linear transfinite grid generation for the final generation

of complete multiblock grids is now under development.

5.5 Control of grid quality and acceptability

It may be expected that CFD specialists will have considerably better options for controlling the
quality and acceptability of a multiblock grid, when the following technical means are available.

- Both, compound and elementary faces and edges available for use. (Compound blocks are not needed.) If
desired, enclose in special blocks regions requiring extra dense grids, or allowing coarser grids. Use

of unit-normal continuous surfaces defined by patches of bicubic transfinite Hermite polynomials, to
position complicated block faces in the flow.

- Grid-point density defined per bluck, under the constraint that computational multi-indices of grid
points in each common face of two blocks can be mapped onto each other by a linear transformation.

Grid refinement/coarsening over block faces allowed (grid-point density control here).
- Grid tuning has the 'locality' property discussed above. Grid tuning, using in subsequently each edge,

each face, and each block, the chain of mappings:

computational coordinate(s) in edge, face, or block
+ weight function(s) for grid tuning (brid smoothness control here):

natural independent variable(s) in edge, face or block +

- 3D vector function defining the geometrical shape of the edge, face, or block:
: grid-line coordinate(s) in edge, face, or block.
Bi- ana trilinear transfinite interpolation is used to define weight functions in faces and in blocks
from those in the edges and faces, respectively.

5.6 Hyperblocks

A hyperblock is a collection of blocks, arranged to form a desired topological structure, and having
a rough geometrical shape that may be defined in detail as desired. Examples are the Cartesian,

Cylindrical, and Spherical hyperblock structures of figure 5.1.

Hyperblocks may become useful to speed up the interactive block-decomposition process, by inserting

automatically around a given aerodynamic configuration part a large number of blocks, faces, edges, and
vertices in one hyperblock with one hyperblock command. It remains to be investigated whether this

feature is really needed in practice, because the use of compound faces and edges may in practice

eliminate the need for hyperblocks, in particular when graphical workstations are fast enough.

6. Concluding discussion

The scientific technical issues to be reported here are what may be learned from past experiences,
and to conclude from them how to proceed in near future with the grid-generation discipline.

Multiblock grids can be used with success for numerical flow simulations around complex aerodynamic

configurations (section 4). This may be achieved by:
integrating development work in grid generation with corresponding work in flow-solver development
(section 2.1, 2.3-2.5),

developing new mathematical theory for the description and construction of the topology, the geometry,

and the grid-point distributions for numerical multiblock-flow simulation, and by
developing new corresponding block-coupling algorithms in the flow solver [7,8J.

In section 5, five technical concepts for the improvement of the multiblock grid generation

procedure are proposed. They may in particular be used to improve the accuracy of the flow simulation

results and their stable computation (sections 4, 2.1), and to reduce manhour investments in the
construction of multiblock grids. These five concepts are:
1. compound blocks, faces, and edges (section 5.2),

2. grid refinement per block (section 5.3),

3. new aerodynamic-geometry modeling techniques (section 5.4),
4. control of grid quality and acceptability with various new concepts (section 5.5), and

5. hyperblocks (section 5.6).

It may be expected that the incorporation of these concepts in the multiblock flow simulator codes
will greatly improve the system in the desired directions, Because the concepts are introduced now, the

firm proof of this expectation cannot yet be presented here.
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Fig. 2.2 NASA-Langley wing-nacelle-propeller configuration.

Fig. 2.3 Fokker 50l and Fokker 100 configuratins.



Fig. 2.4 Aeritalia G2?2 cunriguration.
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Fig. 3.1 Example of slope-discontinuity of grid lines at block faces, edges, and vertices.
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Fig. 3.2 Example of weil-defined grid at corners of flaw domains.
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Fig. 4.Ia Example of collection of grid planes.
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Fig. 4.lb Example of collection of grid planes.
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1ig. 4.1c Example of collection of grid planes.
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SUNMARY

Three examples of different grid generation procedures are reported in this paper. The
first one is based on a single-block approach but nevertheless it is able to handle very
complex aircraft configuratons and requires only a minimum of user input. This system was
the base for the development of the following patched grid method. The next example shows
the application of the patched grid technique for the zonal solution of Euler, boundary-
-layer and Navier-Stokes equations and demonstrates the ability of this method to achieve
the necessary local grid refinement for viscous calculations. Finally an application of a
patched grid method for an Euler code with a shock fitting approach for supersonic cal-
culations is presented. Here the grid near the body surface is fixed whilst the grid in
the outer region is moved so that it can be adapted to the location of the bow shock.

1. INTRODUCTION

Grids which are used for Euler calculations are usually continuous over the whole
computational domain because this is the most simple way for the implementation of the
flow solver. For the solution of the Navier-Stokes equations however, it may be impos-
sible to generate a suitable continuous grid, at least for more complex configurations.
In this case the use of patched grids is a very attractive way to solve the problem. But
this approach is not limited to Navier-Stokes solutions because the use of patched grids
offers the possibility to introduce local grid refinement and/or local grid adaption
easily.

For the patched grid approach the computational domain is divided into different regions.
In each region the arid may be adapted to the special requirements of the flow solver.
These grids are finilly patched together to cover the whole flowfield. This may be done
in twio different ways. In the blocked approach the grids fit together so that there is no
overlapping. Another method is to overlay the different grids so that the grid lines are
really overlapping. This grid is much simpler to generate but problems in the flow solver
may arise because of the necessary interpolation work and because a conservative dis-
-retization of the goveining equations is very difficult. Applications of both methods
are included in this report.

The paper starts with a short discussion of the advantages of CAD systems for surface
grld generation. This is followed by an overview of the basic grid generation algorithms
that are used. The major part is the description of various grid generation methods. This
includes grids for complex configurations suitable for Euler solutions, patched grids for
zonal solutions (a coupling of Euler/boundary-layerrNavier-Stokes equations) and adaptive
meshes for a shock fitting Euler code.

2. SURFACE GRID GENERATION

The surface geometry of new aerodynamic configurations is usually developed nowadays
using CAD/CAM systems (Computer Aided Design/Computer Aided Manufacturing), in which the
geometLy is represented by mathematical functions. The CAM part of them allows direct
programing of NC-machines (Numerically Controlled) and thus represents the connecting
link between construction and production. Since the constructed geometry is represented
best in the CAD system it is the natural way to use CAD also for the generation of sur-
face grids required for numerical simulations and to link construction and numerical
simulation in this way. In contrast to the usual proceeding, where the geometry is trani-
fered to the grid generation algorithm by means of point coordinates which are to be
interpolated, a deformation of the geometry is completely avoided. Due to the interactive
working technique and the plotting devices inherent in CAD systems, grid generation can
be done ve.y efficiently. Only few additional features compared to standard CAD systems
are to be provided, which are known mainly from conventional grid generation, like
input/output routines, routines to compute point distributions along lines etc.

In the following the surface grid generation for a hypersonic forebody configuration
using the CAD system CATIA will be describc exemplary. The lines i-const. (i-lines) are
situated in cross section planes. Starting point for the surface grid generation is the
CAD surface model (Fig. 2.1a). The first step is to define the cross section planes for
the i-lines. For this purpose a suited point 0i.L-ibution along, say, the x-axis is
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created and planes normal to the x-axis are constructed at these points. These planes are
intersected with the surface geometry to create the i-lines of the surface grid (Fig.
2.1b). Since the surface usually is represented in the CAD system by various overlapping
elements, the i-curves are obtained as overlapping elements, too, which have to be
trimmed and concatenated to get a single, unique curve. The generation is finished with
the creation of suited point distributions along the i-lines (Fig. 2.1c).

The described process, of course, is just an example. The inherent flexibility of CAD
systems allows a generation very closely adapted to the various problems. Furthermore the
application of CAD is not limited to surface grid generation. Also two-dimensional space
grids can be build up very easy. The probably more interesting further application, how-
ever, is the construction of outer boundary conditions for the two- and three-dimensional
elliptic grid generation procedures described in the following chapters.

Once the surface grid is generated its quality should be assessed by analysing the metric
properties (1i, which are requiried to be sufficiently smooth. Figure 2.1d shows as an
example the distribution of the metric tensor component a1 1 , a further analysis can be
found in [2].

3. BASIC GRID GENERATION SYSTEMS

The grid generation systems used for the cases described in this paper are all based on
elliptic systems, namely on some formulation of Poisson's equation. The reasons for this
are the well known advantages of elliptic partial differential systems (discussed for
example in (3]), in particular the extremum principles to guarantee a non-overlapping
grid, the smoothness of the resulting grid and the possibility to specify the points on
the entire boundary.

3.1 ORIGINAL POISSON SYSTEM

The most commonly used form of a general Poisson-type grid generation system is

n-. + l. + = 
Q  (3.1)

Grid control is exercised via the so called "control functions" P, Q, R. For the examples

shown in this paper, thece functions where used to attract grid lines towards other
specified lines or points like described in [4]. The range and intensity of this attrac-
tion may be chosen. The attraction in a-direction is controlled by the P function which
takes the following form in 2D:

attraction towards a line &=C.=const.:

P = A i sign(&i-& exp -B) (3.2)

attraction towards a point (&i., .i

P = A. sign(&- C ) exp ( C B i, (3.3)

where the subscript i denotes a particular line &=const., A, is the intensity of the
attraction and B, is a decay factor whi-h limits the range of the attraction effect.

The Q function works in a similar form for the attraction in n-direction with C and r
interchanged. Eq. (3.1) has to be transformed in the computational domain and the
resulting quasi-linear equation is solved by a Gauss-Seidel iteration scheme. An appli-
cation of this type of grid generation system is shown in Chapter 6 for the HERMES
reentry vehicle.

3.2 BIHARMONIC SYSTEM

This grid generation method is also based on Poisson's equation, but this time the
formulation in computational space as explained in (5] is used:

+ + x = P( .V. .

YE + yn + Y1" - Q(t, ti,C), (3.4)

ZEE + zn + Z = R(,.).

Therefore no transformation between physical and computational space is necessary.The
values of the control functions P, Q, R are determined by the solution of Laplace's
equation to assure a smooth distribution of the source terms over the whole computational
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domain:

P& + Pn + P = 0,

Q&& + Ql + Q , 0, (3.5)

R& + R,, + R 0.

Together, these two sets of equations form the biharmonic equation V
4
x1 = 0. Due to the

stability problems of central difference approximations of higher-order derivatives,
this fourth-order equation is implemented as a system of the two second-order equations
(3.4) and (3.5). The discretization of the derivatives by centered differences leads to
linear algebraic equations in physical space which can be rearranged easily to yield the
final equations for the grid point coordinates. For the numerical solution of these
equations a simple Gauss-Seidel iteration scheme is used.

The boundary conditions for the coordinates may be of Neumann or Dirichlet type. The
boundary conditions for the control functions P, Q, R are calculated using the current
coordinates of the points near the boundaries according to Eq. (3.4). As the location of
these points changes during the iteration procedure, the values of the control functions
at the boundaries do not remain constant but are updated continuously.

There are different ways to calculate the boundary values of the control funactions, de-
pending on the type of boundary. To obtain a concentration of grid lines towards inner
boundaries (i.e. surface of the configuration), one or several grid lines away from the
surface must be generated by some algebraic grid generation technique. At the last grid
surface determined in this manner the boundary values of the control functions are deter-
mined using the coordinates of the surrounding -' nts as indicated in Figure 3.1a. At the
outer boundaries where freestream flow conditions are imposed, the values of the control
functions are put to zero forcing a LEplace type grid in this region (Fig. 3.1b). In a
multi-block approach, the boundary tecween two blocks is treated with a similar technique
as the inner boundaries. The c,itrol functions at the block boundary are determined from
the coordinates of the surr.unding points in both blocks as show in Figure 3.1c.

The next two chapters will show some applications of this grid generation system, both
for single-blo'k grids and for pa'ched grids using a multi-block approach.

4. SINGLE-BLOCK GRID GENERATION FOR COMPLEX GEOMETRIES

4.1 GENERAL DESCRIPTION

The application of the biharmonic grid generation system will be demonstrated first for
single block grids, as this is the basic grid generation approach. To resolve complex
geometries properly, a very flexible H-type topology with several interior branch cuts
is used. This leads to a number of singular lines and points on the surface called
fictitious corners. So in this concept not the flowfield but the configuration has to be
divided into blocks as it is shown in Figure 4.2b for the surface grid of a fighter air-
craft. The whole computational domain is a single block and the volumes lying inside the
configuration have to be excluded from the calculation.

The grid generator accepts any number and arrangement of configuration blocks. As input
the program needs the surfaces of these blocks. So the first step is the division of the
whole surface into sub-surfaces which are limited by fictitious corner lines. Then a
suitable point distribution on these surfaces is generated as described in Chapter 2. The
points on these surfaces must already have the correct global coordinates , and
special care has to be taken aL the interfaces between two surfaces to assure continuity
of grid lines. Starting with this input the grid generator recognizes the dummy volumes
inside the confiquration and marks them witn a logical flag.

As explained in Chapter 3.2, the first coordinate surface off the boundary has to be
calculated by some algebraic method to achieve an attraction of grid lines towards that
boundary. In this case this attraction is done in quasi-radial direction by specifying a
constant aspect ratio (a/b) like shown in Figure 4.1. For &=constant boundary surfaces
this attraction is done along &-coordinate lines and in an analogous form for the other
coordinate directions. In principle it is possible to specifiy different aspect ratios
for different surfaces or to specify the distance of the first coordinate surface from
the body instead of the aspect ratio.

In the plane of symmetry, the grid may be generated with a 2D version of the grid ge-
neration algorithm or by using symmetry boundary conditions for Eqs. (3.4) and (3.5). In
the normal case the farfield boundaries form a rectangular box and a perpendicular inter-
section of grid lines is imposed. It is also possible to rotate any of its faces so that
a truncated pyramid is formed (Fig. 4.5b).

The advantage of this single-block grid generation method is that once you have a sui-
table surface grid with properly defined block boundaries, it is very simple to generate
the grid for the flowfield because only few parameters are necessary, namely the number
of grid lines and the attraction parameter(s). The disadvantage is that you have only
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limited grid control possibilities. Therefore the resulting grids are in general useful
only for Euler calculations. The Euler method and some applications are described in
[6,7].

4.2 APPLICATIONS

The grid for an advanced fighter aircraft demonstrates that it is possible to generate
grids for very complex geometries with this single-block approach. The main features of
this configuration (see Fig. 4.2a) are a fuselage with belly intake, a cranked delta
wing, canard and two fins. Figure 4.2b shows the surface grid in computational space and
illustrates the complicated block structure that is necessary to resolve this configura-
tion properly. For the generation of the volume grid (Fig. 4.3) only one attraction para-
meter was used for the whole mesh. Details of the grid generation procedure are described
in [8]. The rpsults of the Euler calculations done on this mesh are reported in [9].

Another example is the grid for a wing tunnel model which was used for wave drag investi-
gations. The model has a fuselage with a delta wing and plyons with external stores may
be added. i-:re 4.4 is t~kcr fon [101 ani shows the surfaee grid and igure 4.; shows
some views of the volume grid. AS the calculations had to be done only for supersonic
test cases, the outer boundaries were adjusted to the presumed location of the bow shock
(Fig. 4.5b) in order to minimize the total number of grid points.

5. PATCHED GRIDS FOR ZONAL NAVIER-STOKES APPLICATIONS

5.1 ZONAL SOLUTION METHOD

Together with the development of large vector computers it is possible now to compute the
viscous flow about realistic configurations. At MBB the Navier-Stokes solver NSFLEX was
developed and applied successfully for a wide range of Mach numbers [11,12]. However,
systematic application of Navier-Stokes methods in aerodynamic design is limited up to
now by high computer costs. To accelerate the Navier-Stokes method the so-called CCPNS
(close coupling procedure for the Navier-Stokes equations) method was designed, see for
example [13,141.

The principle is to cover the flowfield with a uniform Navier-Stokes grid. In regions ofweak viscous-inviscid interaction the fine grid in the vicinity of the wall is discarted
to get an Euler grid there, which is a subset of thie governing Navier-Stokes grid. In

these weak interaction regions an equivalent inviscid flow is calculated, i.e. a combi-
nation of an Euler and a boundary-layer solution. The boundary-layer calculation in theseregions delivers the equivalent inviscid source distribution for the inviscid solution as
well as the flow profiles for the coupling of the equivalent inviscid region and the re-
gions of strong viscous interaction where the Navier-Stokes equations are solved. Strong
viscous interaction occurs where shocks or separation are located. There the boundary-
layer equations are no longer valid. In Figure 5.1 the different zones can be seen for

the wing flow application presented here.

To study the effect of using patched grids, the method was coded and extensively tested
for Euler flows [13]. There it could be shown that the zonal Euler solution and the
global Euler one give the same results even for very different cell sizes at the arti-
ficial boundaries if third order accurate fluxes are calculated at these boundaries, too,
as in the complete flow field [13].

The present zonal method was applied to several two and three-dimensional flow problems.
In comparison with a full Navier-Stokes solution, the CCPNS method requires about half
the computer time and yields similar results. Note that the code is highly vectorized.
The MBB boundary-layer code SOBOL ([1,15]), which solves the second-order boundary-layer
equations is incorporated in the method as a subroutine. The CCPNS code is designed to
find the different zones of flow modelling automatically and to rezone them if this is
indicated by the boundary-layer method. To get a good vector performance the different
zones are chained to one-dimensional arrays plane by plane.

Due to the flow and the grid topology the flowfield is divided in four different zones
(Fig. 5.2). In blocks 1,3 and 4 the Navier-Stokes equations are employed and also a
Navier-Stokes grid is used. In block 2 the Euler together with the boundary-layer equa-
tions are solved. An equivalent inviscid flow is calculated there on a much coarser grid.
At the artifical boundaries coupling approaches are necessary at every time step. The
boundary-layer solution is recalculated after some time steps.
The surface grid together with the outer grid shell of the Navier-Stokes mesh is shown in

Figure 5.3.

5.2 GRID GENERATION FOR A WING FLOW SINUALTION

From a given surface distribution a C-O-type grid is generated using local monoclinic co-
ordinates at the wall whereever possible, since the boundary-layer theory is restricted
to such coordinates. Note that the boundary-layer method works on the same surface grid
as the Euler-Navier-Stokes method does and that for a second-order boundary-layer solu-
tion an inviscid flow distribution is required. with this surface normal grid an alge-
braic turbulence model, like the one of Baldwin and Lomax, is easily and accurately to
apply. Exponential stretching is used in these algebraic subblocks, that means where vis-
cous effects are predominant. The height of the first cell is designed such that the



dimensionless wall coordinate y will reach about 2 to 4 in the flow solution to resolve
the viscous sublayer of the overall turbulent flow with at least one cell. After a NSFLEX
solution y+ is checked for accuracy reasons.

The inviscid flow grid is found as a subset of the viscous one by simply omitting some
cells. In Figure 5.4 a detail of a n=const. plane shows the Euler grid in comparison with
the Navier-Stokes grid, which differs just near the body. Since the grid is perpendicular
to the wall and since the Euler mesh is a subset of the Navier-Stokes mesh only little
interpolation work is necessary for the CCPNS process.

The elliptic grid generation procedure described in Chap. 3.2 follows algebraic mesh
generation to cover easily the outer region with mesh points. Utilized is the biharmonic
system, Eqs. (3.4),(3.5). Dirichlet boundary conditions are employed at all boundaries of
the computational domain. This way the grid points are attracted towards the algebraic
mesh. To vectorize the grid generation method red-black Gauss-Seidel iteration is used
like in the Navier-Stokes method.

T:z urfce ;rid fc- - generic +ranspnrt airczaft wing is bihown ii. rigure 5.3. iu geL an
exponentially stretched point distribution in the farfield the whole grid is redistri-
buted along &,-=const lines, the lines starting from the surface, using the curves of the
algebraic and the elliptic subblocks as interpolation paths. The main features of the
C-O-type mesh used can be seen in Figure 5.5, where the symmetry plane, the outer
boundary and the plane where the upper grid joins the lower one is plotted.

The computational domain is devided up into four different blocks (Fig. 5.2). Block 2 is
the equivalent inviscid one, the Navier-Stokes equations are solved only on blocks 1,3
and 4. Since the zonal boundaries are not known a priori it is necessary to allow them to
float during the convergence process. This rezoning capacity is achieved by chaining
planewise the solution vector, the geometry and what else is needed in the different
subroutines in one-dimensional arrays. Then the answer is calculated again on one-di-
mensional array and restored in the original three-dimensional arrays. Thereby only one-
dimensional arrays have to be added to the code in comparison to the mono-block NSFLEX
code. For details see [16).

To demonstrate that both the patched grids and the zonal solution procedure give reason
able results here one application out of (161 is reported. The freestrea= condition is:
M.=0.78 and z=2.2 degrees, Re=7,000,000. The governing Navier-Stokes grid consists of
156,000 grid points which is a rather crude grid. In chordwise direction 100 cells are
used, in spanwise direction 40 cells and normal to the wing 39 cells. For the inviscid
part of the grid 10 cells from the Navier-Stokes grid are omitted, see Figure 5.4. This
means that the Euler grid consists of 116,000 cells in total. The resolution at the wall
is rather fine for inviscid calculations. The height of the first Euler cell is designed
to be 0.02 percent of the mean chord length. The boundary layer is calculated in the
region of the equivalent inviscid flow (block 2 in Fig. 5.2) with 50 points normal to the
wall. A much higher resolution s achieved in comparison with a Navier-Stokes solution
especially in regions where the boundary layer is thin since the boundary-layer mesh is
adapted to the boundary-layer thickness.

In Figure 5.6 the isobars on the lower and on the upper side of the wing demonstrate
perfect smoothness across the zonal boundaries. The same behaviour can be found in the
skin friction and the pressure distribution at all spanwise stations [16). Compared to a
global Navier-Stokes solution the results are nearly the same whilst the computer time is
reduced and the accuracy in the zone of the boundary layer is enforced.

With the zonal method described above all tools are available and verified also for the
use of embedded meshes both for Euler and/or for Navier-Stokes applications. In the
future this will be done to resolve special features of hypersonic flow fields around
complex configurations in more detail.

6. PATCHED GRID FOR THE HERMES REENTRY VEHICLE

A computational grid has to be generated for the HERMES reentry body, which is suitable
for the calculation of the flow field using a shock-fitting-EULER-code (finite differen-
ces), that means good continuity for the metric dorivatives and simple and fast adapta-
tion to the location of the bow stock is needed, because the grid has to be adapted after
every timestep [17,18). An eL.ential point for this is a fixed surface grid on the body.
For a good resolution of the body in a flow calculation it is useful to attract points at
regions of large curvature, and coarsen the grid spacing in areas of small curvature,
that is to cluster the grid points. As measure for the clustering the local radius of
curvature is used (Fig. 6.1), which is smoothed (Fig. 6.2,6.3), because clustering should
occur in the whole neighbourhood of maxima of curvature. Also a constant level is added,
so that the rest of the curve is not too much depleted from grid points (Fig. 6.4). The
coordinate points given in spanwise cross-sections of the body contour are catched with
parametric splines for interpolation, The grid points on the cross-sectional curves are
then chosen such that they divide the area under the clustering function into equal
increments (Fig. 6.5). This procedure results in a special point distribution for the
given ribsections. Now the coordinate points of corresponding intervals are connected by
splines, resulting in grid lines along the body. For the final surface grid (Fig. 6.6)
these grid lines are intersected with the cones of the special coordinate system for the
shock-fitting-algorithm, where the distribution of aperture angles o are given.
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For the generation of the space grid the body is divided into two areas with an over-
lapping part, to make interpolation of flow variables possible for the calculation. A
one-block grid with straight lines to the fitted bow shock and body adjusted angles W and
4 (Fig. 6.7) is used for the front part. The distribution of points on the lines is
achieved by an exponential function, to enable condensed grid lines at the body
(Fig. 6.8).

Such a simple structure of the net is not possible for the rear part (winglet section).
The region between body and fitted bow shock is divided into two areas (Fig. 6.9). With
the angle 8=700 of the tangent a footline on the wingtip is defined (Fig. 6.10), also a
straight line in the x-z-plane of symmetry with the angle c=450 is chosen (Fig. 6.11).
The boundary curve between the two blocks in the ribsections are chosen as half ellipses,
which intersects the two fixed lines. The point distribution on the boundary curves
(Fig. 6.12) are then done with the weighting function based on the local radius of
curvature, like described above.

Since block 2 has a rather complicated boundary and is fixed in time, in this block the
grid is generated numerically by an elliptic solver [3,4,19,20]. This 2-D grid generation
code [21] distributes grid points by solving Poisson's equation (Chapter 3.1) using
Gauss-Seidel overrelaxation. The source terms in the Poisson system admit clustering of
grid points along specified lines or points. The strength and range of source terms can
also be varied by the user (Eq. 3.2 and 3.3). The grid points on all boundary lines of
the domain have to be specified and are (except on symmetry boundaries) not moved by the
solver. An attraction line has been placed on the upper wing surface cross-section curve
and attraction points are set at the wing root and at the junction point between the wing
and the winglet. The strength of the source terms are adjusted such that the space grid
appears compatible with the given boundary point distribution in the first grid plane.
The source terms are then held constant in the grid generation process of all other grid
planes to get a smooth grid in the z-direction. Fig. 6.12 shows the computational grids
in two cross-sections. It is nearly body orthogonal and smooth. The resolution of this
type of grid is better than the one block grid especially near the wing-body junction.

Due to the time-dependent bow shock boundary, which moves during the relaxation in its
stationary location, the outer grid block is time-dependent, in contrast to the inner
block, which is fixed. An algebraic grid generation is the most efficient strategy for a
time-dependent grid [22,23,24]. The simple geometrical form of block 1 allows to choose
straight lines from the inner boundary to the bow shock, in the same manner applied to
the forebody. The points along these straight grid lines are distributed with the same
exponential stretching function used for the front region. To achieve grid lines as
smooth as possible across the block boundary, the angle 4 of the grid lines has to be
matched to the angle distribution of the fixed grid in block 2. First a raw angle

distribution is calculated. At the block boundary the angle is taken over as linear
extrapolation of the grid lines in block 2. At the body contour of the lower wing surface
the angle 0 is calculated from the body normal projected onto the grid plane (Fig. 6.14).
This distribution is smoothed by an IMSL spline, so that monotonous increasing is
achieved (Fig. 6.15). At last Fig. 6.16 shows a whole two-block grid plane in a
cross-section.

The flow field computation runs in two parts, first the forebody with the one-block
structuie is calculated. Then the flow variables in the overlapping section are inter-
polated from the one-block grid into the two-block grid and taken as boundary condition
for the winglet region (Fig. 6.17). After convergence is reached the two datasets are
connected for analysis. Fig. 6.18 shows the lines of constant Mach number on the surface
of the body. In spite of the patched grid the solution shows good continuity at the
tranc 4ticn between the different grids, where a better resolution in the section with
two-block structure is achieved.

7. CONCLUSIONS

Although the described single-block grid generation system is acceptable for a wide range
of Euler applications, its strong smoothing tendencies and limited grid control possibi-
lities make it unsuitable for the generation of Navier-Stokes type grids. This disadvan-
tage could be overcome by the introduction of an algebraic sub-grid which provides a
resolution which is sufficently fine for calculations with viscous methods.

An important fact is, that the flow solvers have no problems in handling the boundaries
between two different grids. The computed results show no jumps in the flow quantities
across the boundaries. Although the patched grid methods shown here have been applied
only to specific configurations, the experiences are encouraging. The use of patched
grids is an interesting and relatively simple way to introduce local mesh refinement and
adaption. This is especially true for viscous flow calculations.

Future work will include the improvement of the single-block system so that it is
possible to have more influence on the grid. This includes a posterior grid optimization
and also some interactive grid generation strategies. An extension of the basic method to
multi-block grids is also planned. The patched grid technique will be applied to other
configurations to develop a more general approach, in addition the grid for the HERNES
configuration will be adapted to the requirements of Navier-Stokes calculations.
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a) CAD surface model (schematically) b) creation of i-const. lines

a 1

2.

c) final surface grid

d) quality assessment of surface grids

Fig. 2.1 Surface grid generation for a hypersonic forebody configuration

a) inner boundary b) outer boundary c) block boundary

- boundary

* points where the control function Is calculated

O points necessary to calculate control function

Fig. 3.1 Boundary conditions for control functions
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Poisson
grid generation

towards tne surface

fixed point distribution

Fig. 4.1 Attraction of grid points towards the body surface

b) in computational space

Fig. 4.2 Advanced fighter aircraft, surface grid

Fig. 4.3 Advanced fighter aircraft, upper surface grid
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Fig. 4.4 Wing-fuselage-pylon-store - combination, surface grid

a) cross-sectional surface b) grid surface at wing root

Fig. 4.5 Wing-fuselage-pylon-store - combination, details of volume grid
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Fig.5.5Detilsof C-0-type
grid

Fig. 5.6 Isobars (CCPNS solution at M.-O.78, a-2.2* Re-7,000,000)
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Fig. 6.12 Comparison of the original geometry
points and grid points of computational Fig. 6.13 Computational grid in block 2
grid in two planes in two planes

Fig. 6.14 Raw angle Fig. 6.15 Smoothed angle rig. 6.16 Computational grid of two
distribution distribution block grid in cross section
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rig. 6.17 Comparison of lines of constant Mach number
an one-block and two-block grid (interpolated) rig. 6.18 HERMNS forebody and vinglet region,

M - 1,a - 301, ideal gas. Lines
cTostant Mach number on body
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Summary

The ability to calculate the flow around complex aircraft geometries is fundamentally
controlled by the ability to generate grids of suitable structure and quality around the
configurations of interest. This paper discusses the approach to Multiblock topology
specification and grid generation pursued within British Aerospace, targeted to make
Multiblock flow prediction methods available for use at all stages of the aerodynamic design
process. The grids and computed flow solutions for a number of complex geometries are
shown, and the capability for rapid systematic analysis of similar configuration geometries is
illustrated.

1. Introduction

The aerodynamic optimisation of an aircraft design requires the use of a multitude of computational and experimental
techniques. The design of civil aircraft in particular places stringent demands on the accuracy and generality of these
techniques, as fractional improvements in aerodynamic performance translate into significant fuel or payload operating
benefits. The most fuel efficient powerplants for these aircraft are getting ever larger with ultra-high bypass or unducted
,ans offering significant performance benefits over conventional turbofans. These engines interact strongly with the
aerodynamics of the wing, and as a result, it is no longer possible to consider the optimisation of an aircraft configuration
design without conducting complete configuration flow simulations.

These requirements on accuracy of flow simulation and generality of application have governed our approach to
computational flow modelling for aircraft configurations. Encouraged by the pioneering work of the Aircraft Research
Association (ref. 1) in Multiblock grid generation, and work within British Aerospace (ref. 2) developing an efficient finite
volume Euler Mutiblock flow solver, an opportunity was seen to develop computational techniques for the systematic

analysis of complete aircraft configurations : a method that would allow the optimisation of a wing design fully accounting
for engine installation interference effects. Furthermore, the same general purpose Multiblock codes could be used to
analyse a wide range of aircraft configurations.

The particular approach to Multiblock that we have pursued, considers multiple blocks of curvilinear grid joined face-to
-face without overlap or holes to cover the entire flow domain. In this way, blocks of grid can be joined to form the optimum
grid structure for modelling the flow around component geometries : C-grids for wings. 0-grids for bodies, etc. (fig. 1).

Multiple blocks of curvilinear grid joined to form the
optimum grid structures for component geometries

C-grids for wings 0-grids for bodies

Figure 1 : The Multiblock Concept
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No restriction is placed on the orientation of a block face relative to its neighbouring face, as long as grid points correspond
one-to-one across the interface. At the boundary to the flow domain a single boundary condition type is imposed over the
block face. according to whether the face adjoins a solid surface, inflow or outflow boundary.

It should be noted that compared with alternative multiple block techniques, for example those that allow mixed boundary
conditions over a block face, the current method makes use of a larger number of smaller blocks. Fhe logical connection
between these blocks is however very simple, and this has allowed formulation and implementation of grid generation
algorithms that iteratively relax inter-block boundary grid points as the overall grid itself is generated. This ensures
smoothness of the grid across the block boundaries, but more importantly from a practical viewpoint, it absolves the user
from having to specify the shape of the boundaries. The large number of small blocks also provides an opportunity to
exploit parallel processing efficiently in the various Muttiblock solution algorithms

2. Strategy for Multiblock grid generation

While simple in principle, considerable practical difficulties are encountered when the Multiblock grid for a complete aircraft
configuration is to be considered. Conceptual problems arise where the grid structures from various component geometries
must be integrated, and practical problems arise in handling the "topology" data for the configuration (the specification of
how each block adjoins its neighbours). Further problems arise in specifying detailed control of the grids, and these
problems are compounded when the requirement for systematic analysis of similar geometries is considered.

At first sight, our approach to Multiblock grid generation might seem heretical, in that we attempt to specify and describe
our grid as fully as possible without actually generating it ! However, it is this development of a "geometry independent grid
description" that provides the key to use of Multiblock for general aerodynamic design - allowing systematic generation of
grids for any number of similar configuration geometries, consistently, quickly and without further user interaction.

The process of developing the Multiblock grid description for a new configuration type, starts with a formal definition of the
configuration in terms of how the various component geometries intersect and fit together. A number of issues must then be
addressed

0 definition of the topology of a multiple-block grid structure, with optimum grid structure for
modelling the flow over component geometries.

0 definition of grid density and grid point clustering for the configuration surfaces, and over
key grid control surfaces slicing through the flow domain.

* generation of surface grids for any specific configuration geometry, and generation of
the associated field grid.

The following sections discuss our approach to these modelling issues.

3. Topology Definition

The ability to define a consistent multiple-block topology fundamentally controls whether Multiblock methods can be applied
to a particular configuration. While endeavouring to develop techniques to facilitate the process of topology definition, it is
therefore essential to maintain complete generality, so as not to preclude the modelling of new types of configuration.

It was reasoned that the initial sketching of a block structure on paper could be formalized in the graphic construction of a
3-d wire-frame schematic of the block structure. This would allow any coherent block structure to be specified, and the
physically representative nature of the schematic would allow holes or overlap in the block structure to be identified at an
early stage. Analysis routines acting on the schematic could then automatically generate the lists of topology indexing data
required to formally specify the block structure for the various Multiblock calculation methods.

3.1 Graphical Method

Initially, a direct graphical method was devised to enable construction of a multiple-block wire-frame schematic by means
of cursor input to a 3-view representation of the topology (fig. 2). At any time, the cursor can be used to establish a current
x. y or z working plane, and the complete ordinates of a point on that plane are then specified by cursor input to the third
orthogonal view window. A single block can be defined by tracing out the position of its 8 vertices, or compound block
building utilities can be invoked to perform stacking, splitting or mirroring of multiple-block structures. These utilIties In
particular facilitate the generation of well structured topologies,

Areas of locally detailed block structure can then be introduced into the topology by deleting blocks to create a hole, and
mapping In an Independently generated detailed sub-topology. In this way for example, the block structure for a single
turbofan engine installation could be generated once, and be inserted Into both the inboard and outboard engine locations
In a wing-fuselage topology.
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x Side view Fronti view

,Y / I H I

x Planform view kv Isometric view

Figure 2 : Wire-frame schematic of wing-fuselage topology.

3.2 Automatic Method

Through the experience gained in graphical block decomposition and in control of the associated grids, it has been
possible to devise various rules and strategies for block decomposition. These rules are being progressively implemented in
an automated block decomposition method, that generates a wire-frame schematic to represent the complete field grid
topology, given just a simple block representation of the configuration to be modelled. The configuration is defined in terms
of a collection of cuboidal blocks, positioned in space to represent the relative position of the various geometric
components within the configuration. The grid structure local to each component is considered initially as a "hyper-cube"
structure (fig. 3) with a block of grid sitting on each face of the component to form a complete 0-0 type wrap-around grid
structure. The block of grid on any face can then be collapsed. so for example, it the blocks adjacent to the Xmax, ymnm and
ymax faces are collapsed, then the classic C-H grid structure for wings is established. In this way, the appropriate
wrap- around grid structure for any geometric component of arbitrary orientation can be specified : wings, pylons,
fuselages. stores. smoothly closed wing-tips etc.

Figure 3 : Initial 'hyper-cube' grid topology, and C-H topology.

The technique has been further generalized to model internal block structures for inlets and through-flow nacelles. All these
component grid structures then fit together within a topologically cartesian block matrix, to cover the entire flow field. The
3-d wire-frame topology schematic that is generated can of course be edited graphically so any locally complex grid
structure beyond the current scope of automation can be built into the topology interactively.

This automated block decomposition capability is illustrated by the definition of the complete field grid topology for an

executive jet configuration, with aft-fuselage mounted turbofan engine installation (fig. 4). In this case, a 7-block
representation of the configuration was processed to give a 1697-block grid structure to represent the external flow field
including through-flow nacelle representation (see figs. 13 & 14 for grid and flow solution).

Figure 4 : Automatic block decomposition for executive jet.
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4. Grid point control along boundaries

The definition of grid point density and clustering in a Multiblock grid, is achieved through the definition of grid point spacing

along key geometric lines on the configuration surface geometry and over selected grid control surfaces slicing through the

field grid. These grid control lines will include all significant geometric features (leading and trailing edges, intersection lines,

top and bottom fuselage centrelines) allowing control of grid clustering over the configuration surfaces, and will also include
grid control lines hanging between the configuration and the outerboundary, allowing control of grid point spacing in the
direction normal to the configuration surfaces.

It should be noted that the shape of such grid control lines can be extracted from the geometric database for the

configuration, and it is only the form of the distribution of grid points along the control line that need be specified in the grid
description for the configuration. Again, the philos,nhy of specifying these distributions in a form independent of a specific
geometry has been pursued, so that the grid description can be applied to any number of geometries of the configuration
type in systematic design analysis studies.

It is useful to consider an example to illustrate the mechanisms used to control grid point alignment and clustering along
grid control lines. Fig. 5 illustrates Muftiblock surface grids for the plane of symmetry and fuselage for a wing-fuselage
configuration. Grids with and without grid point control are shown.

Figure F uselage and plane of symmetry surface grids. before and after control of boundary point spacing.

We can describe the features of the controlled grid compared with the default equi-spaced grid, in terms of the positional
alignment of key features, and the clustering or spacing of intermediate grid points

*Align grid point on fuselage top centreline with the wing trailing edge.
*Cluster grid points on wing-fuselage intersection line to leading and trailing edges.
*Set, cell height normal to wing leading edge equal to grid point spacing around wing leading edge.
*Set clustering on fuselage top centreline to match clustering at trailing edge of wing.
*Reduce clustering at rear of fuselage.
*Align grid points on top outerboundary with the wing trailing edge, and rear of fuselage.
*Set grid point spacing on outerboundary to match that along fuselage centreline.
*Cluster grid points towards fuselage.

..etc.

These forms of grid control are essentially similar to features that might be coded up in the standalone grid generator for a
single-block wing-fuselage grid, or might literally be the actions executed by an engineer generating grids at a CAD
workstation building up a grid interactively around a specific geometry.

We have sought to retain the attractive features of both approaches. by devising a set of geometry independent standard
format grid point alignment and clustering instructions. These instructions or labels are associated with the grid description
or topoliogy data. A custom Interactive CAD tool has been developed that allows the setting and manipulation of these
labels by graphical picking and movement of grid points. This is closely Integrated with the surface grid generation modules
allowing the development of the grid control for a complete configuration In a single interactive session.

When satisfactory grids are achieved, the full grid description is saved. This grid description describes the status of the final
grid control for the configuration (rather than a list of incremental edit instructions) allowing direct generation of grids for any
number of similar configuration geometries, consistently, quickly and without further user interaction.



5. Surface grid generation

The surface grid generator comprises firstly an interpreter that specifies the position of the boundary grid points according
to the actual geometry and the grid control labels, and secondly the surface grid generation modules themselves. Elliptic
p.d.e. grid generation techniques rather than algebraic or interpolation techniques are used because of the requirements to
cater for singular points and to relax inter-block boundaries (ensuring smoothness of grid across interfaces).

A variety of elliptic solvers have been implemented, both to initialise the surface grids (ref. 3) and to calculate the final high
quality grids. Hybrid solution procedures can be defined for any surface in the topology to allow solution strategy and final
grid control options to be optimised for that surface.

5.1 Thompson method

The primary grid generation method used is that due to Thompson (ref. 4) working in terms of the section/generator
definition of the geometric surfaces. or an x-y type parameterisation of outerboundary and control surfaces

1 X;; + ,X ) - Xx + 'Y(X'Y + X)ii)=0

= x,,. + . y7

- = X + yy

The 4 and * grid control terms along boundaries are derived using the Thomas and Middlecoff formulation (ref. 5) to
propagate boundary point spacing through the grid (first term) and with an additional term that is iteratively updated to force
orthogonality of the grid to fixed boundaries. This second term is derived from that reported by Thompson (ref. 6) to
account for the curvature of the family of grid lines approaching the boundary, but calculating the curvature term using the
target grid line slope at the boundary and the slope evaluated at 1/2 a cell out from the wall. This technique has the benefit
of using just one point in the field and has proved very robust :-

SX;; X9 + Yg Y iy + 2X.XT12+ Y T1-

XIT (X T1 + YrlwiY11 _V -2 1-X92 + T- 12

The effect of this orthogonality term is illustrated for a grid control surface through an -itegrated wing-pylon-
nacelle-propeller installation (fig. 6).

Figure 6 : Effect of grid orthogonality control

The formulation of the grid control and the recommendations for interpolating it through the field apply to a single block
curvilinear grid structure. While analogous Interpolation techniques can be applied in a multiple-block environment, special
consideration must be given to the formulation of grid control along grid lines approaching singular points, where the local
grid structure Is non-cartesian.

In the same way that the grid control Is updated to achieve orthogonality to fixed boundaries, so the grid control along lines
approaching singular points can be updated to control the angle between the grid lines at the singular point Itself (fig. 7). If
full mutual orthogonality Is specified for the singular point then an equal angle between grid lines at the singular point will be
achieved.
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Figure 7 : Update of grid control at singularities

5.2 Curved surface formulation

The use of a Thompson solver working simply in terms of the section/generator definition of a curved surface, is in general
quite adequate for the majority of geometric components in an aircraft configuration. However because it does not work in
physical space, orthogonality of the grid to fixed boundaries cannot be directly controlled. A further problem can arise in the
case of highly stretched and sheered surface definitions, because the grid inevitably depends to a degree on the detail of
the section/generator definition.

A curved surface formulation of the Thompson solver has been developed within the B.Ae. Multiblock surface grid
generator by Forsey and Billing of the Aircraft Research Association, a development of their work reported in ref. 7. The
bi-parametric surface patch definition of component geometries is interrogated throughout the iterative solution strategy,
and the surface metrics are used to decouple the surface grids from the detail of surface definition. Expressions analogous
to the Thomas and Middlecoff formulation can be derived for grid control over curved surfaces, and a similar strategy for
updating the grid control can be applied to achieve orthogonality of the grid to boundaries and to control the grid near
singular points.

The effectiveness of this formulation is illustrated in the generation of surface grids for the fuselage of a wing-fuselage
configuration. Orthogonality of the grid is now achieved around the wing intersection line, and better control of the three
point singularity is achieved on the forward fuselage.

Original section/generator formulation

Curved surface formulation

Figure 8 . Comparison of surface grid generation techniques for fuselage.

6. Systematic analysis of similar geometries

Optimisatlon of the aerodynamic design of any aircraft configuration requires analysis methods that can be applied
systematically in the study of a range of geometries. For example, in the engine installation studies for civil transport
aircraft, the effect of varying nacelle Incidence and position relative to the wing must be assessed, and the section and
camber of the pylon must be controlled to optirnise the flow on the undersurface of the wing.

The geometries to be analysed in these parametric studies are essentially similar in form and proportion, however the
detailed profie of any part o the geometry may vary between cases. In Muttbiock terms, the same topology, grid structure
and grid point distribution will be required for all these geometries to achieve consistent flow field simulations. The use of a
geometry independent grid description as described earlier ensures this similarity of grid quality between cases. and thus
provides the basis tot systematic analysis of any number of geometries of the configuration type.
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The flow chart below illustrates the processes and user interactions involved in using Multiblock for the systematic analysis
of configuration geometries. With the topology database for the configuration type established, there is only minimal user
input required to complete the flow simulation

pConfigurationgeom-etry I f
Geometry

modellorI

7dgeneratr

I ' " 1 I 1 & Field grids

Fow calcnlation inecontro data I "
IF Flow solver

Srow-fie d anaysid s e a of nthe
t gcommands a d a f t

Postprocessor

Ale v tFlow-field visualisation data
Sectional results

Flow chart sudmarising analysis of a configuration using Multiblock.

7. Applications

The various graphical and automated techniques for topology definition and surface grid generation have been used within

B.Ae r on a number of aircraft projects (fig. 9). The geometric modelling and field grid generation codes developed at
A.RA. Bedford, and the Multiblock Euler code developed at BAe, Bristol are used to complete the Multiblock flow field

analysis for the configurations. The following subsections discuss selected applications in detail.

7.1 Wide-body civil transport aircraft

A number of Multiblock topologies have been established in support of B.Ae.'s wide-body civil transport design
programmes. Under-wing turbofan engine installations are modelled using a graphically generated 368-block 300,000 cell
topology (fig. 10). This features C-grid structures around the wing and pylon, and around each section of the nacelle to
form a C-0 structure, This nacelle O-grid structure adjoins a cartesian block of grid along the nacelle axis (fig. 11) and the
tubular grid structure extends upstream and downstream of the nacelle.

Alternative topologies have been generated automatically, that consider the pylon to hang straight below the wing. or to
protrude forward from the wing leading edge. This later topology that is more representative of typical configuration
geometries, avoids the highly sheered grid structure against the pylon side (fig. 12).

The flow solution for all these topologies compares favourably with wind tunnel results. The different pylon grid structures
show differencies in detailed predictions in the vicinity of the pylon. however the effect of pylon grid topology on the gross

aerodynamic interaction effects with the wing are minimal. A number of different nacelle pylon geometries have been

studied using Multiblock alongside comprehensive wind tunnel test programmes.
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7.2 Executive aircraft

The block structure used for modelling the executive jet was specified automatically (fig. 4). and the resulting 1697-block
1,000,000-cel grid structure is illustrated in figure 13. This features C-grid structures around the section of aN component
geometries - wing, pylon, fin and tail, and around each section of the through-flow-nacelle. As with the civil transport
configuration, the tubular grid structure of the nacelle extends both upstream and downstream to the outerboundaries.

The engine installation for this configuration lies just forward of the wing trailing edge so there is a strong aerodynamic
interference effect with the wing. This is illustrated by the contours of surface pressure depicted in figure 14, showing the
area of decelerated flow at the wing root trailing edge, caused by the blockage effect of the nacelle. The detail of flow in
the pylon-nacelle-fuselage gully was also represented by the calculation, and compares favourably with wind-tunnel
results.

it is interesting to note in this configuration, that geometrically the leading edge of the tailplane lies behind the trailing edge
of the nacelle, however because of the sweep and sheering of the grid structure required to model the leading edge of the
fin, the tailplane leading edge is topologically forward of the nacelle trailing edge.

8. Concluding remarks

The combined use of graphical and automated techniques in Multiblock topology definition and surface grid generation, has
facilitated the application of Multiblock to a wide range of complex aircraft configurations. In particular, the use of a
geometry independent grid description specifying the generic grid for a configuration type, has allowed the systematic
analysis of numerous similar geometries in parametric design studies.
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Figure 9 Extent of the application of Multiblock within B.Ae.



Fiure 10: Surface grids for wide-body civil transport aircraft.

Figure 11: Grid for transverse slice at wing trailing edge

Figure 12 Altwmntlve topolopla for pylon.



Figure 13 Multblock surface and field grid for executive aircraft.
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Figure 14 Contours of surface pressure for executive aircraft.
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Siiuiiiary
A glrid generation t clinique for curved surfaces and three-dimensional regions is presented. It, tie
two-dimensional case the set of solutions of the proposed grid generator belongs to the class of quasicon-
friial mappings, and it is shown that under appropriate conditions, it represents unfolded orthogonal
c-ordiates. The isotlerinic coordinates are a particular case of this wider family of mappings. In three
dimensions the solution of the mapping system is harmonic. Different kinds of stretching including an
adaptive control of the mesh clustering are presented.

1. Introduction

As numerical algorithms for the solution of the governing equations of fluid-dynamics are progressing,
as well as computer resources, there is an increasing demand to simulate flows over more realistic
aerodynamic shapes. As the complexity of the flow domain increases, the role of mesh generation within
the overall numerical simulation become more important.

The objectives of grid generation are essentially two. Firstly the grid must accurately represent
the geometrical boundaries of the domain. Secondly the mesh distribution should resolve all the scale
lengths of the flowfield solution. This last constraint is accomplished by an appropriate clustering of
the grid points in the parts of the domains where important ilowfield gradients are expected. If the
positions of the high-gradient regions are unknown or they evolve on time, the mesh generator and the
flow algorithm should interact in order to adequately redistribute or add grid points.

N uiierical grids can be classified into two main categories: unstructured and struct ured meshes I.
Ilist rittured meshes are formed by a set of points and a connection between them, forming triangles in
1 w,, diiensions or tetraliedrons in three dimensions. They are very flexible and it is possible to easily
treat niltiple-connected domains, however the data handling is quite involved and moreover certain
efficient numerical algorithns, such as ADI techniques, cannot be implemented.

In body conforming structured grids the connections between points is defined throught the curvi-
linear co,,rditiate systei. The niost fruitful strategy for generating structured grids in complex config-
urations is the inultiblock approach. The physical region is segmented into subregions bounded by six
curved surfaces. t this way each block is chosen to be topologically equivalent to a cuboid and therefore
Itoc mapped itlli a unit cube in coipttational space without change in topological structure. Cartesian
grids iii the unit cbles in coiputat; ,ial space map to curvilinear grids ill physical space.

Byi sibdividing tie flow cdoinain into a set of blocks, it is possible to distinguish the subregions
,,r blocks where an accurate grid is necessary because of geometric constraints or because the flow
ili developing into 1he corresponding physical region exhibits important gradients, or ioths. In these

suhiregionts tile grid characterized by an appropriate metric, should minimize the geometric-induced
,lisretizati|ll errors associated with the numerical algorithm employed to solve the flow equations.

'heii dealing with finite-difference or finite-volutie algorithms it is advisable to have smooth grids,
with a liiited departure from orthogonality. Moreover a dynainically-adaptive clustering of points iii
fle t t-giotts where tlie flow variables display important gradients may be advisable.

The accurate description of the boundaries of the physical domain is a crucial aspect of the nit
iierical siiuiilation. Moreover the surface grid generation has a dominant effect on the quality of the
voltiie grid. In this work a grid generation technique for generating structured grids on| curved stir-
faces is presented. In two dimensions, the set of solutions of the proposed grid generator bclongs to
ti class of quasiconforial mappings 121, and they represent orthogonal curvilinear coordinates. More-
over it is proved that the differential model admits regular continuous solutilns, without local foldings.
Suhsequently the technique is extended to three-dimensional regions, and it is shown that the solution
represents harn,,mic maps.

2. Curvilinear coordinates in Euclidean spaces

Grid generation of curvilinear coordinates in Euclidean spaces consists in the construction of the coor-
dinate system {4} corresponding to given metric tensor components, that is in calculat:ng the transfor-
ination r."(J), {r} being the cartesian frame.

The mapping r' -- 1(() defined on the domain D represents a coordinate transformation if the
function f : P -- D(D,De R") is one-to-one in each point PE D and has a local inverse which is one-to-
o(e on the image of a neighborhood of P. Then if in Poc D the Jacobian detert inant J( f) $ nby the
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inverse function theorem it follows that there exists in a neighborhood of P a regular coordinate system
without singularities or local foldings. These conditions of local regularity are satisfied by a proper
choice of the metric tensor components g,. However even if J(f) 0 0 at all the points of V, it does not
follows that f is one-to-one on V. In order to have a globally one-to-one mapping on V it is necessary
to appropriately specify the physical domain D, by a one-to-one correspondence g : O - 8D.

The knowledge of the metric element ds2 = gjddid4j at an arbitrary point P of the space, enable us
to image a frame F with origin at this point, with characteristics specified by the components gi. The
local reconstruction of the space consists in localizing with respect to this frame F, the frame F' relative
to a point Q contained in a neighborhood of P. It is then necessary to find a set of equations expressing
the characteristics of r" in function of the known frame F. Being d = dzx'F, by the definition of the
vectors §,, tangent to the axes of F, and of covariant derivative, with 17'. the connection coefficients, we
have

dF = d'iji = l,n (2.1)

=i di4% i,j,k = 1,n (2.2)

If the functions g,,() are continuous, the symbols Fj' can be expressed as functions of the derivatives
of go. Equations (2.1,2.2) solve completely the problem in a neigborhood of P, and form the mapping
system.

The conditions of integrability for equations (2.1,2.2) require that, for symmetric symbols I', = r,,
the curvature tensor RiSk = 0. The functions gi., must satisfy this flatness condition in order to be viewed
as the components of the Eucidean metric. Moreover the solution of the mapping system (2.1,2.2)
represents the curvilinear system specified by the given metric tensor components, and the functions
.11C) are a local coordinate transformation in a neighborhood of P, if gij E C' and the determinant of
I li, matrix goj, g $ 0 in P ( regular metric ).

For a regular mnetri- we have x'(&') E C' at least, then the mapping system (2.1,2.2) can be converted
iii,, a system of second-order partial differential equatins. Differentiating equations (2.1) with respect
to . Iy using equation (2.2), we obtain

02" 49xz

__1_ % k = 0 r = 1,3 (2.3)

The terms on the left-hand side of equations (2.3) are the components of a symmetric second order
covariant tensor, called the second fundamental form of the map z' = f'( J) [3]. The trace of this
tensor, ostained by inner multiplication by g,,, is called the tension field of f, and it is formed by the
system of second-order partial differential equations

9 ' -- g , = 0 (2.4)

System (2.4) is the most general set of equations which can be us-d for grid generation in Euchdean
spaces

A mapping f is defined harmonic if and only if it is an extremal of the energy integral [4]

e If)( ) = 2 ]49g" d . N (2.5)

It can be shown that equations (2.4) are the Euler-Lagrange equations arising from the varational

problem of the energy integral (2.5), then their solutions z I = f( ') represent harmonic maps.
The terminology tension field can be explained by a physical picture of a harmonic map f-1 :D- V

14]. Suppose that D is made of rubber and that E) is made of marble: the map f constrains D to lie
on D. At each point of D there is a vector representing the tension in the rubber at that point. It is
seen that f is harmonic if and only if f-' constrains D to he on V in a position of elastic equilibrium.

System (2.4) can be recast into the form

Vg N, V4 ' = 0 r = 1,3 (2.6)

aid it follows that the basic mapping system is formed by a set of Laplace-Beltrami equations, which
cam Ie viewed as the Euler-Lagrange equations of the variational problem of the integral

I /vg ,,, - i d4 (2.7)

3. Surface orthogonal coordinates

The development of an appropriate grid generation technique for n-dimensional spaces mus, begin by

specifying the n-independent metric components in order to represent a particular curvilinear coordinate
system. Their substitution into system (2.4) leads to a specific mapping system which, with a suitable
Ret of boundary conditions, defines the mapping problem whose solution represents the appropriate



cooirdlinate tranisforimation. As it has been shown previously, tile coordinate transformation satisfies the

properties of local regularity if the metric is regular: gi, E C' and g 34 0 in D. Anl explicit considerationi
,thle flat ness condition is not necessary. It is a requirement of integrability which is satisfied when t lie

existence of thme coordinate transformation x'(tJ is proved.
A surface in the Euclidean space is individuated by two coordinates, say t' and t', holding the third

fixedl. If in addition the t
3
-coordinate lines are orthogonal to this surface (91n3 = 923 = 0), system (2.6)

reads, with r 1, 3 and aJ,- = 1, 2

S(,g& ) = (K1 + K2 )n' (3.1)

where K, and K2 are the principal curvatures of the surface, and We, thle local unit normal vector
formiiig withl thle tanigenit vectors of the surface coordinate lines t' and t', a right-hansded framie.

For anl orthogonal surface grid {t"I we have 912 = 0, then equations (3.1) take the form, withl
P"-92'li and T1

a (Fa' 1+ I (-1-a-' = (Ki + Kz)m' (3.2)

Let u- b'} e any arbi~rary surface coordinate systems such that r'(u'). The metric tenssor components
o,~1f the surface orthogonal coordinates {t*1 must satisfy the following relations

22= F 2 
(, )gmI , 912 = 921 0 (3.3)

where the (istorsioti function F is non-zero and continuously differentiable. If a~b are the msetric teiisor
components of the u

0
-coordinates, by the transformation law for tensor components, equations (3.3)

yield the relationis

F a,, au (3.4)

where ai -
0

i22 -- a12 and E-3 is the pernmutation symbol (c = -621 ~ = 1). Equaioii
(3.4) are the generalized Cauchy-Rieniann equations. The reason for this terminology is that they reduce
to the well kniown Cauchy-Riemnarn equations of complex analysis when the surface is flat (a.0 = b O).

System (3.2) with the cartesian coordinates f,-' as dependent variables, can be reduced to a set
4, two equations with unknowns the surface coordinates {u'}. By the chain rule for differentiating
comnposite funcitions and by equations (3.4), systenm (3.2) takes the fornm [5]

(F'" 0 1 Oil r '''' a ae a (3.5

Iii flat snirfaces it is possibsle to int roduce cartesian coordinates { u 0 , in tsis case the rhis of equaltioiis
(3 7. as well as oif equat ionis (3.2), vanishes, and tile s stemii takes, thle same linear form as the mapping
sysI emii propiosedl iii ref.1il to generate oirt hogomial grids oin planie domains. Also iii tile case of isothermic

-orinates {n'' ) thle rHis of the miappimng system (3.5) vanishes. Thus it is possible to 'oiiclude that if 1ie
snirfa-e is paramiet rized bY isoithiermir coiordjiiates { mi' } thieni any other orthogonal coorditnate system
-ami 1w obht aiiied as solut ion of a grid genierationi technique dheveloped for two-dimensional plane domaiiis.

Eqais (3 1 are the Euler- Lagrange equations from thle variational p~rohlenm of the integral

1, J( P'g1 i Y2)d~dq (3.6i)

Fhe~ timlst,,riiatioi ,'(( formtliogoiial coordinates, ciirrespoinitg t the niainmg of a rectaigidar
dwIi P *let;nedl (iii the miathemmatical planie t" ounto a domlain D), defined oi the surface .r('),

ti~l. .,i of the bl~oia ,ivaliie probhlemti formed by the miapirig system (3.F) aiid 1)y a set ()f
,h-11di l 'rX ,milditjms. Tlie hioiimiarY ondhition, iiiist emisuire that the image if the lmomidair '

01' -in, mimIs wit Ii thle b omtim Iary 0T) i thle stirface. Tlhis ciO rlS)ti dltcC (anl lbe obt ai ned by speci ft ing

Diii, Iiflt Immmmimuar v conditins. However mi fi resetit case the comiditioni of ort ligotialit y (3.4) iiiist
l1I imm ~lm lmigli thle limmnmtary OP. Iti general Diriclilet hmnindary coniditionis are nt cotisistetnt withI these
additionial cmonstrainits. It is possible to overciome tt is piroleimi 1)y represetiting the lmmtiimiary 'V1)il

mar aii et ri ft in i, atid tom enifomrce a 'shiape correspondence' (of 01) withI thle imiiage mif OD, by leavinmg tOm
mmmiit idart grid ptoiints ton flo~at alomig thle btt id ary dD bet weentitle corresponiditng cormner potit s, iii orderr
Iosatis sly tpilatiotns (3.4).

If tle imiappitig ii" f) ) represemnts ami alwamle inappinig, the lacobiami (etertiitatit of thme
ft ict io mi f : ) -1) miu st tiut vattishi on P. Ort hogotnal coordintat es satisfy iii eachI poi tnt of P thme
geeraiizedl C 1 eqtlat unts (3.4 ), thIecm it follows thIiat thle J1acohiam det ertin iiatit reads

at ai F I. /a 01 ()?/

Th'lis fritadlrater forumi is positive definite, amid it vanishes otnly if . or if both the partial derivativesOo
F'.

are zero. littf tis camnmot lie true for a regular solution, thlemn the grid will always he unfolded.
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The existence of surface orthogonal grids, solutions of the boundary value problem formed by equa-
tions (3.5) and the boundary-point relocation procedure ensuring the orthogonality at the boundaries,
can be proved as follows. It is known (Rad6 theorem [7]) that every orientable surface which carries a

metric tensor can be made into a Riemann surface. Then all orientable surfaces with a metric admit a
conformal structure carried by the isothermic coordinates, and by the Koebe-Riemann mapping theorem
for Riemann surfaces it follows that an arbitrary region D of the surface bounded by a simple closed
curve, can be mapped onto a simply-connected plane domain. If the system {u} is isothermic the rhs of
eq.(3.5) vanishes, and the resulting mapping system can be interpreted as a particular case of the com-
plex Beltrarni equation [6]. Then from complex analysis it follows that in this case the transformation
u0 (9) is a regular quasiconformal mapping [2]. Having proved the existence of isothermic coordinates,
the problem of the existence of surface orthogonal coordinates is reduced to the existence of a solution
of the Beltrami equation, which is known to exists. Then it is possible to state a mapping theorem
for quasiconformal mappings analogous to the Riemann theorem for conformal transformation [2]. In
addition, for mappings u' = f(9O) which are quasiconformal on V, it is possible to prove that if the
image of 3D under f is a one-to-one sense-preserving image which consists of a simple closed curve aD,
then the mapping f defines a global one-to-one correspondence between D and D.

The mapping theorem states that the solution is unique fixing the correspondence of three points
on 19D with the images of three points of 3D. Being interested in quadrilaterals domains D, it follows
that it is not possible to map D on 'a priori' specified rectangular regions D. For a given domain D with
conformal module Al = m(D) [7], the conformal modulus of the rectangle D is given by the relation

m(D) = (3.8)

K being the upper bound of the distorsion function F. For conformal mappings F=l, and it follows
that the two regions must have the same conformal module [6]. For a rectangular region, the conformal
module coincides with the side ratio, then it is possible to normalize the region D into the unit square

P and t, treat rn(D) as an unknown stretching parameter, by adding the relation

m2 _f,5 F V '11/9-22 d~d
M= F hg d (3.9)

Equation (3.9) is obtained by integrating equations (3.4).
The numerical algorithm consists of two steps. Firstly, for a fixed boundary point distribution

and given conformal module, the finite-difference discretizations of equations (3.5) are solved by an
approximate factorization technique. Then the positions of the boundary points are adjusted in order
to satisfy equations (3.4), and the conformal module is updated by solving equation (3.9).

The control of the grid spacing is obtained by specifying the distorsion function F(., i). For F =

we have the case of conformal mapping. Aiong a ri-constant coordinate line the differential dil vanishes
then from the definition of metric, it follows that the incremental arc length, da is given by the relation

d3 = v/-id (3.10)

Similarly along a c-constant line, denoting by t the arc length, di = v/g2d?7. From the definition of
distorsion function (3.3) it follows

F( , 7)= -(3.11)

The functions s( and 1,, represent the distribution of the arc lengths along the coordinate lines with
respect to constant increments of and qi, and can be prescribed by any suitable stretching function.
Fig.1 shows an orthogonal grid on a part of an ellipsoide, with stretching of the grid points near the
corners, obtained by specifying the functions s4 and t, as expouential stretchings with respect to 1"}.
It is worth noting that this grid cannot be interpreted as the composition of a isothermic transformation
and one-dimensional stretchings.

If the attraction line or point is in the interior of the domain, rather than on a boundary, then it is
necessary to specify the stretching functions si and I, as functions of (u*}. A typical control function

has the form [8(
84 = I- CA 11_ 1(- [e~ (3.12)

where i and ric) are the unit vectors tangent to the attraction line and normal to the f-coordinate line
respectively, d, the shortest distance between the grid point and the attraction line, and A a decay
factor. In figure 2 it is shown the grid on a part of a sphere, with concentration of the grid points with
respect to a fixed point inside the domain.

From the previous considerations it follows that the most straightforward adaptive specification of
the distorsion function F is given by a curve-by-curve approach 19]. Along a u7-constant coordinate line
the basic differential statement of the equidistribution law is

w( , )da = Cd( (3.13)

For each given curve, C is a constant. However going from a curve to another curve of the same family,
that constant becomes a function of the transverse variable which governs this progression. Comparing
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equations (3.10) and (3.13), it follows
= -(3.14)

A similar result holds for ,92 along c-constant coordinate lines. For a given weight function, the
constant C is determined explicitly by integration of equation (3.13) along the entire curve. The weight
function depends upon the physical space {u}, moreover the coordinate line 'moves' during the iterative
procedure for solving the boundary-value problem; then the value of C as well as the function g11 must
I)e ulpdated at each iteration.

The weight function is formed by a positive scalar of the type i = 1 +cM, where M is a non-negative
function formed by some error estimate or some normalized gradient of a scalar function representative
of the physical problem. And c is a non-negative constant indicating the level of importance attached
t) Al. In the present case we used a function M based on the normalized first derivative along the
coordinate line of a scalar test function f.

Figures 3-a,b show the grid around a double-ellipse shape; the grid is clustered along the shock-like
fronts simulating the intersection between the bow shock and the shock originating from the canopy .
It can be noted how the grid is fitting the shocks, with one family of coordinate lines being aligned to
the fronts while the other one is crossing it orthogonally.

4. Three-dimensional curvilinear coordinates

The aim is to develop a grid generation technique for generating structured three-dimensional grids with
smoothuess, limited departure from orthogonality and adaptive clustering of the mesh points. Imposing
the 'constraints of orthogonality g12 = = 9= 0 the metric tensor components can be expresser,
follows

o j= A )ij (4.1)

where A r) is the value of the diagonal metric tensor component gii. Introducing the following notation,
with no summation on repeated indeces,

F(,) = v/gg9" (4.2)

from the general mapping system (2.6), we obtain the mapping system

-F()0 r = 1,3 (4.3)

being x1 = x, x2 = y and r" = z cartesian coordinates.
As in the case of two-dimensional mappings [5,61, it is possible to obtain from the metric tensor

constraints (4.1) a set of relations which represent the conditions of integrability for the mapping system.
These conditions can be considered as the extension of the generalized Cauchy-Riemann relations (3.4)
to the three-dimensional case, and they call be expressed in the following form, being the tangent
vector to the ,-coordinate line,

391 92 X #3) (4.4)
3F~j)

I

1
3 _- (§ x gi) (4.6)

3 F(3)

As shown in section 2, the solution of system (4.3) represents a harmonic map, and it is all extremal
,f the integral (2.7) which in this case reads

2 f, (F1)g91 + F(2 )g2 + F 3)933 ) dN (4.7)

The bilinear forni a( , v) corresponding to the integral I, satisfies the relation

"(1%,Vj) = O (9 g" Vo"t, > - 1 112 (4.8)

foi every point { P'} - P and for ever) u C- R4, a :- 0, being the Beltrami-l,aplace operator elliptic.
Theii the hilinear foirm is coercive, and it follows that for a domain with a smooth, or a piecewise smooth,
bomidary, there exists a unique weak solution of the boundary-value problem formed by system (4.3)
and a suit able set of boundary conditions 1101. The bilinear form (4.8) is symmetric then the solution
Minijizes I,,.

lidlike the two-dimensional case, where it was possible to state the condition for the existence of
a regular solution, in three dimensions the metric constraints and the relations (4.4,4.5,4.6) form an
rverdeterniined system, then the class of regular harmonic mappings is highly restricted.

The control of the grid clustering can be obtained in a similar way as in the case of two-dimensional
orthogonal coordinate. Applying equation (3.10) to the definition of the functions FP, (4.2), and denoting
with :;,t and it the arc lengths along the -, q- and (-coordinate lines respectively, it follows
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F( = (4.9)
V s

Similar relations hold for F(i2) and F(13 .
In fig.4 the grid obtained in a region between two ellipsoids is shown. The grid on the boundary

surfaces has been obtained by transfinite interpolation, and kept fixed during the iterative procedure.
The interior grid is smooth and with a limited departure from orthogonality. An improvement of the
present technique could be obtained by leaving the boundary points to move on the boundary surface
in order to satisfy the orthogonality requirements.

5. Conclusions

A grid generation technique for curved surfaces and three-dimensional regions is presented. In two
dimensions it has been proved that the mapping represent unfolded orthogonal coordinates. In three
dimensions the resulting mapping is harmonic. Clustering control including an adaptive curve-by curve

method is presented.
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SUMMARY

The mesh-generation scheme described in this paper nas been designed to cope with
complex geometric and flow features by employing many regular three-dimensional overlying
meshes. Features are classified according to the number of geometric constraints to
which they are subject, and each feature has its own purpose-built mesh. Four different
mesh topologies are required to deal with all possible geometric and flow features. Pro-
gress to date is described and meshes for simple three-dimensional configurations are
shown together with results of some Euler flow calculations.

1 INTRODUCTION

The geometric complexity of aircraft configurations presents a major challenge to
those involved in generating field meshes upon which the governing flow equations may be
discretized and solved numerically. Accurate representation of all parts of the solid
surfaces of the aircraft and of the boundary conditions that apply there is crucial to
obtaining numerical solutions in which the aircraft designer can have confidence. There
is now broad agreement amongst &esearchers that alignment of the mesh to all solid sur-
faces is necessary in order to achieve this accuracy. For complex configurations, this
requirement alone places numerous constraints upon the mesh and these frequently result
in meshes that are of poor quality in some parts of the field. Further constraints arise
because the quality of the numerical solution is also strongly dependent upon how well
the mesh represents features other than solid surfaces. These are the features of high-
speed viscous flow which may have a directional bias, such as shock waves and shear
layers, or they may simply be regions of high, but not directionally dominated, flow
gradient. As a result of these difficulties, methods for generating meshes have over
recent years grown considerably in complexity and sophisticationl. Usually, the task of
generating a mesh of even modest quality for a given complex configuration requires con-
siderable user expertise, much manual intervention and several man-months of work.

Most mesh-generation methods fall into one of three categories: multiblock,
unstructured or overlapping, although the last of these may be called overset or over-
lying. The strategy behind the method 2 described in this paper was inspired by the
nature of geometric and flow features that occur in high-speed aerodynamics. The method,
known as Feature-Associated Mesh Embedding (FAME), uses many meshes and is of overlapping-
mesh type, yet it is more appropriately described as being an overlying-mesh method. It
contains many regions of embedded mesh and so is at least in part unstructured, yet it
bears little resemblance to so-called unstructured meshes. Its main mesh is synthesized
from many sub-meshes called blocks, yet it is not multiblock method. This serves to
indicate how difficult it can sometimes be to categorise a method. Before proceeding to
a more detailed description of the present method and of the results in sections 3 and 4
respectively, we will attempt to clarify some of the issues regarding the nature of
various mesh-generation schemes emphasising where possible the similarities between them.
This will comprise section 2.

2 A CONCILIATORY VIEW OF MESH-GENERATION METHODS

In recent years, there has been an unfortunate trend for views to become polarised
regarding the merits of the three broad approaches to mesh generation. It may therefore
be helpful to spend a while identifying some of the similarities between the approaches.
This task is fraught with difficulties; not least of all those of semantics. For
example, let us firstly consider how many meshes are employed in the various approaches.
Few would dispute that overlapping-mesh methods use several meshes. The common view of
multiblock however is that it consists of one mesh decomposed into several blocks. The
use of these words tends to give the impreison that the two approaches are quite dis-
tinct. But are they? If, in one block of a multiblock mesh, we refine (or embed) the
mesh in one or more coordinate directions by (say) a factor of two, so that some mesh
lines terminate at block faces, do we still have one mesh and several blocks, or is it
now more appropriate to consider the finer block to be a separate mesh that overlaps (or
perhaps more appropriately overlies) the original mesh? Certainly the treatment necessary
at such a block face would have much in common with that used in overlapping mesh
schemes. The second problem area concerns use of the words regular and irregular to des-
cribe points in a mesh. Again, few would dispute that unstructured meshes consist
entirely of irregular points. For a multiblock mesh it is also accepted that so-called
singular points at certain block edges and corners are irregular. But what about those
points on a face between two blocks having different orientations; should they not be
irregular as well? And if they are irregular, why is a multiblock mesh commonly referred
to as a structured mesh (a term usially reserved for a mesh consistinq entirely of requ-
lar points)?
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We begin to try and unravel some of this confusion by defining regularity for each
point of a three-dimensional mesh at which the flow equations (possibly in conjunction
with a boundary condition) are to be discretized. The condition for regularity concerns
the addressability of neighbouring mesh points, where the number of these is a function
of the size of the stencil (or computational molecule) associated with the discretization
scheme. For a point indexed (I,J,K) to be regular, all the points in physical space that
are included in the stencil must be addressable as (i,j,k) where i, j and k differ
from I, J and K , respectively, by zero or one (or possibly by 2 for some larger
stencils). In other words, all points in the stencil must be adjacent to the point in
question in computing space as well as in physical space. This condition necessarily
excludes points where more than six mesh lines meet. Mesh points that fail to satisfy
this condition are defined as being irregular.

Let us now turn our attention to meshes rather than points and deal with the termsstructured and unstructured. All meshes possess structure, since without it no spatial
relationship would exist between points and so no discretization scheme could be imple-
mented upon them. For so-called unstructured meshes, the structure is defined on a local
basis rather than the simpler, global basis used for structured meshes. Here we avoid
using both these terms for defining types of meshes since they add little to our under-
standing of the properties of a mesh. Instead, we define a mesh to be regular if all
points at which the flow algorithm is to be discretized are regular. An irregular mesh
is defined as one having at least one irregular point. Whilst these definitions follow
logically from those for points, they may conflict with some commonly-held views. As an
example, an 0-mesh or a C-mesh around an aerofoil is usually considered to be regular.
However, mesh points on the 'cut line' downstream of the trailing edge are interior in
physical space, but are boundary points in computing space at which the flow equations
are discretized. If the mesh is extended across the cut line from both sides through use
of haloes, and the appropriate values of flow variables are set at the halo points, then
the me-is regular by the above definition, since all points at which the flow algorithm
is discretized are regular. If no halo is used, then points on the cut line fail to sat-
isfy the condition of regularity and a poiter scheme is usually adopted to address
neighbouring points. In this case the meshisirregular. These two alternative ways of
viewing such meshes will arise later on in discussion of multiblock meshes. A second
example of where our definitions may conflict with commonly-held views is illustrated by
the two-dimensional mesh, sketched in Fig 1, which might be perceived as being irregular.
If at the boundary points (marked by circles) values of flow variables are given, so that
the flow algorithm is discretized only at interior points, then, according to our defini-
tion, the mesh will be re ular (for a computational molecule no larger than a nine-point
symmetric stencil). In tHis case the irregular shape of the region covered by the mesh
does not automatically lead to the mesh being irregular.

It is widely accepted that flow algorithms are more easily implemented on regular
meshes than irregular ones due to their global addressing property. This simplicity is
exploited by advocates of overlapping meshes where each mesh is usually regular or can be
made regular through the use of haloes, but they pay the penalty of having to construct
possibly complicated and potentially inaccurate interpolation procedures in order to
transfer flow data between meshes. With the new definition to hand, we may therefore
state that overlapping mesh methods use several overlapping regular meshes.

We now show how multiblock mesh methods can be classified in two completely differ-
ent ways according to whether the data structure at block boundaries is of halo type or
pointer type. When using the halo approach, the data array for discretizing the flow
equations at interior points of a block is expanded so that the discretization scheme may
be applied at block-boundary points as well. Where, as is usual, each point interior to
a block iz , ',i 2ruc.d-r L L-- -boundary points regular, but now the
'expanded block' is bigger and indeed it overlaps neighbouring blocks. Through using the
halo procedure, multiblock is therefore conceptually the same as the overlapping mesh
approach and so can be defined as consisting of several overlapping regular meshes. Of
course there are differences in detail between the two. If at lock boundaries, mesh
lines are continuous (this necessarily means no embedding) and changes in the slope of
mesh lines are small, then points may be taken as coincident in the overlap region so
avoiding the need for interpolation. The second approach to data structure at the block
boundaries of a multiblock scheme is to use a pointer system. In using this, the block is
not expanded and so the irregularity of points on the block boundary is accepted and the
pointer system is used to address points in neighbouring blocks. In this case multiblock
may be defined as consisting of one irregular mesh.

To complete the definition of the various approaches to mesh generation, we may
state that so-called unstructured-mesh methods consist of one irregular mesh. The
observation that this is identical to the definition of multib methods when a pointer
system is adopted may cause some consternation, since the two approaches are usually
viewed as quite distinct. The difference in fact is one of degree (albeit a significant
degree) in that all points in an unstructured-method are irregular whereas only a two-
dimensional subs-t-of mesh points is irregular in multiblock. The unstructured-mesh
approach could therefore be viewed as a multiblock scheme (using pointers) with only one
cell in each block, so removing all points interior to a block, which in turn results in
there being no regular points.

In trying to break down some of the conceptual barriers between the three approaches,
we have used the two interpretations of multiblock to link it to overlapping and
unstructured schemes. Why then should multiblock alone have two interpretations? The
main reason is that the two possible data structures at block boundaries (which led to the
two interpretations) are equally viable alternatives for a multiblock scheme where the
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number of blocks is small compared with the number of mesh points. If the number of
(regular) interior points per block became very small (resulting in many more blocks),
the pointer scheme would be preferable to the use of haloes. This explains why for the
unstructured mesh approach (with no interior regular points) a pointer scheme is employed
and in consequence why it is consi-dered as a single irregular mesh. It would, of course,
be possible in principle to adopt a halo scheme for the unstructured-mesh approach there-
by considering it to be a set of overlapping meshes. However this would be most inef-
ficient since the number of meshes would equal the number of points!

Finally then, what are the prospects for an alternative interpretation of
overlapping-mesh methods. Here of course mesh overlap is necessary in order to cover the
whole of space because of the discontinuity in position and orientation between meshes.
We do not have to construct haloes since they already exist (implicitly) via the overlap,
and so our interpretation given earlier (several regular meshes) is natural. In order to
apply the alternative interpretation, we would have to generate a set of irregular points
(to replace the overlap region) which link the neighbouring regular meshes, thereby
creating one irregular mesh. This (irregular) interpretation of overlapping meshes
appears quite plausible. (It should be noted however that it gives rise to a mesh that
is actually different from that obtained with the conventional interpretation. This con-
trasts with the position for multiblock where the two interpretations are purely concep-
tual.) The alternative (irregular) approach for overlapping meshes has indeed been
adopted, but only (as far as the authors are aware) by treating all field points as
irregular 3 , so ignoring the regularity of the majority of the points.

It appears that the argument has gone full circle. The conclusion of our concili-
atory view of the three types of mesh-generation scheme appears to be that they are
indeed similar if one chooses to interpret them as such. The interpretations more com-
monly adopted seem to accentuate differences.

This brief review has avoided a discussion of the merits of the various approaches
to mesh-generation. This omission is deliberate, for suc- adiscussion would have to be
based upon many detailed aspects of the actual methods under development by CFD research
groups. Some of the issues that would have to be addressed in such a discussion are
given below:

(a) What are the factors affecting mesh quality - cell skewness, mesh expansion
ratio, cell aspect ratio, mesh smoothness, appropriate mesh density for flow
gradients - are there more?

(b) In multiblock methods with a high level of continuity at block boundaries, how
do the constraints on the mesh impact on mesh quality; is such a level of
continuity necessary?

(c) How good is the control of cell 'aspect ratio' in unstructured-mesh methods;
how suitable are they for dealing with regions of strong directionality?

(d) In overlapping-mesh methods, how much accuracy is lost through interpolation;

how complex is the program bookkeeping?

(e) How easily can each method be extended to include solution adaption?

(f) How much manual intervantion is needed to get the required mesh quality; how
expert does the user have to be?

It is beyond the scope of this paper to answer these questions. However some of the
issues raised in this section should assist the reader in understanding the philosophy
and strategy behind the FAME method reported here.

3 FEATURE-ASSOCIATED MESH EMBEDDING

The long-term aim of this work 2 is to unify the treatment of geometric and flow
features through a flexible approach to mesh-generation, although in its current state of
development only geometric features are treated. The corner-stone of the method is a
classification of features according to the number of directional constraints to which
they are subject. The strategy for generating high-quality meshes is then built upon
four key ideas. Firstly, in order to minimise constraints upon meshes, many meshes are
employed, with one mesh associated with each feature. Secondly, the spatial extent of
each feature-associated mesh is limited to the neighbourhood of the feature itself.
Thirdly, a main (or background) mesh underlies all other meshes and covers the whole field
of interest; it is not aligned to any of the geometric surfaces. Finally, comparability
of mesh densities where overlap occurs (namely, where flow data is interpolated between
meshes) is achieved primarily through the use of multi-level embedding on the main mesh.

We consider four types of feature; these are classifi- d according to the number, N,
of directional constraints associated with the feature and are denoted as being of type N,
N = 0, 1, 2, 3. Features of type 1 are associated with surfaces, those of type 2 with
lines and those of type 3 with points. Type-0 features have no directional constraints
associated with them. It is asserted that each feature merits its own mesh having a top-
ology that is appropriate to the feature. We refer to meshes that are associated with
features of type N as being type-N meshes. Each of these types is now discussed in a
little more detail starting with type 1.
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"Features such as body geometry, shock waves and vortex sheets in inviscid flow are
associated with surfaces in space; others, such as shear layers in high Reynolds-number
flow are associated with thin regions adjacent to surfaces (which may be solid surfaces
or surfaces within the fluid). All such features are characterised by the direction of
the normal to the associated surface and accordingly these are denoted as being of type 1.
Each type-i feature merits its own mesh which should be orientated according to the
orientation of the associated surface. Where, for example, the surface is a solid bound-
ary, this simplifies the task of satisfying the solid-surface boundary conditions. Each
type-i mesh could thereby be constructed with two coordinate directions in the surface
and one normal to it. The distribution of mesh points within each mesh of type-i is not
a major consideration here; it could be prescribed by any of the methods currently used
for conventional meshes or it could be subject to solution adaption. The novel aspect of
the present approach concerns the spatial extent of each type-i mesh in the direction
normal to the associated surface. The only requirement is that the feature is entirely
covered by the mesh. In inviscid flows, all type-i features are simply surfaces and so
unless there are good reasons for doing otherwise, meshes of type-1 need only extend as
many intervals away from the surface as is necessary to define the flow-algorithm stencil,
as sketched in Fig 2 for an extent of two mesh intervals.

For features such as thin shear layers, the need to resolve very high flow gradients
normal to the associated surface will require us to use a mesh with many small intervals
normal to the surface. Nevertheless, the extent in physical space again need only cover
the feature, see Fig 3.

We define features of type-2 to be those associated with lines, examples of which
may be the line of intersection of two surfaces or a line across which the surface normal
is discontinuous. (Whilst we may sometimes view these as distinct in aerodynamic terms,
geometrically they are one and the same.) Whereas features of type-I are associated with
a single surface and characterised by the surface normal, features of type-2 are associ-
ated with two surfaces and are characterised by the normals to each surface at their line
of intersection. We refer to type-2 features as edge lines (or edges) and consider this
term to embrace all lines of intersection of two surfaces irrespective of their sense
(either 'convex' like a wing trailing edge or 'concave' like a typical wing-fuselage
junction line). The two surfaces concerned may be associated with any geometric or flow
features of type-i. We assert here that each feature of type-2 merits its own feature-
associated mesh. Such meshes are necessary because each type-I mesh is designed to cope
with only a single surface (one directional constraint). Therefore, close to an edge
line where two surfaces intersect (two directional constraints), neither of the type-i
meshes associated with each surface will be suitable. Type-2 meshes, however, are des-
igned specifically for edge lines. In conventional mesh-generation schemes, edges are
treated in a variety of different ways according to the sign and magnitude of the discon-
tinuity in the normal. We may view these treatments two-dimensionally by considering
planes normal to edge lines and by characterising the edge by an angle e ,
-7 < < r , which measures the discontinuity in the surface normal, with 0 taking posi-
tive values for edges of convex type and negative for those of concave type. If we denote
by c a positive angle that is small compared with r , we may identify three different
edge-line topologies in common use as shown in Fig 4 for le1 < C , e±v/21 < e and
le±T < r respectively. Whilst these topologies are perfectly adequate for the geo-
metries concerned, their use presents difficulties where e varies significantly along
the edge as for example in the case of a wing-fuselage junction where topologies (a) and
(b) may occur along the junction line. Here we propose that each type-2 feature irres-
pective of the sign and magnitude of e should have its own local mesh of O-H topology
which takes the form of a cylindrical-polar-type mesh with its axis running along the
edge line. As with meshes of type-i, type-2 meshes need extend only a limited distance
into the field. Proposed meshes of types 1 and 2 are sketched for a wing trailing edge
(in two dimensions) in Fig 5.

We define features of type-3 to be those associated with points, an example of which
is the point of intersection of three surfaces, such as the wing upper surface, the wing
lower surface and the fuselage surface where the wing has a sharp trailing edge. Type-3
features may also exist at isolated points on an otherwise smooth surface (at for example
the nose of a pointed body of revolution). As with types 1 and 2, type-3 features merit
their own feature-associated mesh. The topology of type-3 meshes, being appropriate to a
point, should have 0-0 structure and so take the form of a spherical-polar-type mesh
with the origin of the mesh at the point concerned. The radial extent of each type-3
mesh can (as with the other meshes) be limited to the extent of the feature, which in the
case of inviscid flow merely needs to be sufficient to allow the definition of the flow
algorithm stencil.

Regions of the flow lying away from solid surfaces, shear layers and shock waves are
comprised of features of type 0. Such regions could alternatively be termed 'feature-
less' and indeed, since we classify features according to the number of directional con-
straints associated with them, this term is not inappropriate. However the numerical
treatment employed for type-0 features is crucial to the accuracy of the flow calculation
because these features may include regions of high (but not directionally dominated) flow
gradient. Since type-a features do not have directional constraints associated with them,
type-O meshes can simply be of rectangular-Cartesian type. Further, the absence of any
strong directionality in flow gradients means that all mesh cells may be taken as cubes.
A patch of mesh consisting of identically-sized cubes constitutes a type-O mesh. Vari-
ation of the size of these cells across the field is achieved through mesh embedding by a
factor of two in all coordinate directions so ensuring that all cells remain as cubes, as
sketched in Fig 6 for two dimensions. A type-O mesh of given fineness will, therefore,
be embedded within a coarser type-O mesh. The set of all type-a meshes covers the whole



field of interest, including regions interior to solid components, and is considered to
constitute the main (or background) mesh. This main mesh is synthesized starting with
the coarsest type-O mesh and proceeding to finer type-O meshes through an automatic
embedding algorithm2 that may be driven by a variety of mechanisms. The only mechanism
employed so far in the present work is that arising from the requirement that, where
meshes overlap, their densities should be comparable. Thus for a smooth body, for which
we have just one type-i mesh, the embedding algorithm generates type-O meshes of succes-
sively higher density in the region of overlap with the type-i mesh until the densities
are comparable to within a factor of two as shown in Fig 7. (The embedding algorithm
could alternatively be driven by the magnitude of local flow gradients, thus providing
solution adaption, and it is intended to investigate this mechanism in the next phase of
the work.) In order to rationalize the main-mesh data structure, each type-O mesh is
itself synthesized from a set of comp~tationally-identical sub-mesh units called blocks.
Each block is a cube consisting of n mesh cells, where n is usually taken to be 4,
6 or 8.

In section 2 it was noted that FAME is best viewed as being an overlying mesh
method rather than an overlapping one. The reason for this is central to the philosophy
of the method. The coarsest type-O mesh covers the whole field and, as far as data
structure is concerned, it does not have a 'hole' cut in it where a finer type-O mesh
is embedded within it. It underI-s all finer type-O meshes. Thus each type-a mesh may
be considered to overlie all coarser type-O meshes. This data structure was considered
to be relatively simple to construct and it is immediately amenable to the implementation
of a main-mesh multigrid scheme. A hierarchy of type-O meshes therefore exists with the
coarsest mesh at the bottom and the finest at the top. Relative position within this
hierarchy determines which mesh takes precedence and in consequence the order in which
computed flow data on one mesh replaces those from another. Meshes of type-I, having
been constructed as appropriate to the regions occupied by type-i features, overlie the
main mesh; they are located above type-O meshes in the hierarchy and flow data computed
on them replaces those from the main mesh. In turn, meshes of type-2 overlie those of
type-i (and in consequence all those of type-O), and are located further up the hierarchy
than those of type-i. Flow data computed on type-2 meshes replaces those computed ol. all
meshes lower down the hierarchy. Finally, type-3 meshes head the hierarchy.

It should be noted that, in the context of this method, the statements 'mesh A
overlies mesh B' and 'mesh A is embedded within mesh B'are considered to be equivalent.
The manner in which flow data is transferred (using linear interpolation) from one mesh
to another is the same whether the transfer is between two meshes of type-O or between
those of types 1, 2 or 3 and those of type a; it differs only in detail. For the former
data transfer, the interpolation is simple because all type-O meshes have the same
orientation, whereas for the latter general three-dimensional interpolation is necessary.

Finally, we can now classify FAME according to the discussion of section 2. All
meshes of types 1, 2 and 3 are regular overlying meshes by construction. Whilst the main
mesh with its multilevel embedding appears irregular, the data structi.re that we adopt
ensures that this is not so. Our smallest mesh unit, from which the type-O meshes are
synthesized, is a cube-shaped block. There are a large number of these and they are com-
putationally identical irrespective of their size in physical space. We treat each block
as a regular mesh by expanding its data array to form a halo. (The computational iden-
tity of these blocks enables us to take as the 'vector length' the (large) number of
blocks rather than the (small) number of points in any coordinate direction.) Accord-
ingly, the main mesh is considered to be a set of regular (and indeed uniform) overlying
meshes.

4 DEVELOPMENT STAGES OF FAME AND CURRENT RESULTS

The authors' search for a new mesh generation strategy for complex configurations
and flows began in 1985. By the following year, a pilot method 4 in two dimensions had
been developed which employed a main mesh, with a rudimentary form of embedding, together
with a surface-orientated overlying mesh constructed by dropping normals to the surface
from certain main-mesh points. This study served to indicate how not to approach the
problem, and as a result the present strategy began to take shape to-wards the end of 1986.
A two-dimensional code, consisting of mesh generator and Euler flow solver, was developed
and tested by early 1987. The main and surface-aligned meshes generated by this code for
a three-element aerofoil are shown in Fig 8. A close-up of the region covered by the
slat and leading edge of the main aerofoil is shown in Fig 9. Meshes for the case of two
NACA 0012 aerofoils of different sizes, one above the other, are shown for vertical seoD-
arations of 0.25 and 0.5 (upper aerofoil chord = 1.0) in Figs 10 and ii respectively.
This configuration has been used as a test case in two dimensions for mesh generation
aspects of store release. All the meshes shown in Figs 7 to 1i were generated automatic-
ally from given point distributions on the component surfaces and from three simple con-
trol parameters; no user expertise was needed.

Surfaces in three dimensions become lines in two dimensions, edge lines become
points, and so only features of types i and 2 exist in two dimensions. In two respects,
the treatment of surface-aligned meshes in the two-dimensional version of FAME lacks the
full generality intended for the three-dimensional work. Firstly, a surface-aligned
C-mesh was used for each aerofoil so that the aerofoil surface (type-i) and the trailing
edge (type-2) were accommodated by a single mesh. This runs counter to the general
strategy given in section 3 since one mesh (the C-mesh) deals with two features.
Secondly, the extent of each C-mesF--normal to the aerofoil surface was limited to just
one mesh interval. Whilst this had little impact upon the mesh-generation scheme, it
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limited the flow algorithm stencil to just two points normal to the surface, so prevent-
ing full second-order accuracy from being achieved. Despite the use of a C-mesh and the
partial second-order accuracy, results from the two-dimensional code showed that the
strategy and methodology of FAME was very promising in that high quality meshes for multi-
element aerofoils could be generated automatically.

Work on the development of FAME in three dimensions began later in 1987, and is still con-
tinuing. For this development, the principle of 'one mesh for one feature' is being
strictly adhered to. This means, however, that type-2 meshes are required in order to
treat a configuration as simple as an isolated wing with a sharp trailing edge. At the
present time, the mesh-generation code and an Euler flow solver have been developed and
tested only for meshes of types 0 and 1, so that we are currently restricted to smooth, non-
intersecting bodies, but there may be any number of these. The incorporation of type-2
meshes into the mesh-generation and flow codes is currently in progress. The flexibility
afforded by FAME has enabled us to treat the far-field boundary of the computing region
as a type-i feature and accordingly we give it its own type-i mesh. This has the advan-
tage that the position and shape of the far-field boundary can, where necessary, be
changed whilst leaving the near-to-mid-field meshes unaltered. Further, various forms of
far-field boundary-condition treatments can be investigated on a purpose-built, boundary-
aligned mesh quite independently of the rest of the solution algorithm. Type-i meshes are
constructed without the limitation on field penetration present in two dimensions in that
they may extend more than one mesh interval away from the body surface. For flow calcula-
tions using Euler solvers, the number of intervals normal to the body surface is usually
taken to be two, so permitting use of a stencil with three points in the normal direction
and in consequence allowing for full second-order accuracy. Navier-Stokes flow solvers
can be implemented on type-i meshes since these meshes can now extend many intervals nor-
mal to the surface and may be constructed with very high aspect-ratio cells close to the
surface.

The Euler method employed on all meshes uses a first-order upwind finite-difference
algorithm which is made second-order accurate through use of a deferred-correction
scheme 4 . It is ideally suited to use within the complex embedded structure of FAME since
it has a compact, seven-point symmetric stencil in three dimensions. This Euler algorithm
(but limited to partial second-order accuracy as mentioned earlier) was used as the flow-
solution method in the two-dimensional version of FAME. Results of Euler flow calcula-
tions for the three-element aerofoil of Figs 8 and 9 have been reported elsewhere 2 .

Development and testing in three dimensions of the flow algorithm and of the mesh-
generation scheme have been taking place in parallel. Both methods contain many new
aspects that have needed careful evaluation and checking. In consequence, we have con-
centrated on simple ellipsoidal shapes and indeed much of the testing has been carried
out for flow past a sphere. Since, however, the main mesh in FAME is not aligned to the
configuration surface, the full generality of embedded block structure and of three-
dimensional interpolation is necessary for a body as simple as a sphere. Type-i meshes
(around the sphere and the far-field boundary) are of spherical-polar type. The finite-
difference Euler algorithm 4 , 5 on these meshes has, however, been formulated to allow for
general three-dimensional, non-orthogonal meshes. Visualization of the field meshes in
three dimensions presents difficulties because of the embedded structure of the main
mesh. However, inspection of field meshes for quality is far less necessary in FAME than
in most other methods since the scope for generating meshes of poor quality (in respect
of stretching and skewness) is very limited. Type-i meshes are by construction nearly
orthogonal with direct control over mesh stretching. Type-C meshes are orthogonal and
locally uniform with strict 'factor-of-two' subdivision between embedded levels. This is
checked automatically by the embedding algorithm itself within the mesh-generation code.

Mesh visualization in certain two-dimensional sections through the field is, how-
ever, straightforward, if rather unspectacular for a configuration as simple as a sphere.
An example is shown in Fig 12. Fig 13 summarises results of flow calculations for the
sphere at a Mach number of 0.4 using various versions of the Euler algorithms4 ,5 . These
results are presented in the form of a plot of peak suction on the sphere surface against
1/n2 , where there are 2n surface mesh intervals in each meridian plane; values of n
of 24, 32. 48 and 64 are used. Curves are shown for results usin the first-order upwind
algorithm , the deferred-correction second-order accurate scheme and the partially
second-order accurate scheme that was used in the two-dimensional method. The deferred-
correction scheme is clearly shown to have second-order behaviour with increase in mesh
fineness since the curve through the four points is virtually a straight line.

Meshes have been generated for an idealized, two-component, wing-store configuration
where each component is modelled as an ellipsoid. The wing has a root chord of unity, a
span of 4.0 and a thickness of 0.2. Its surface is defined by the ellipsoid

+ + ()2= 1

The store has a circular cross section of radius 0.05 and a fineness ratio of 6:1. The
surface of the store is defined by the ellipsoid

+ )2 + (z= 1 ,



so that it is located underneath the starboard wing at mid-semi span. Fig 14 shows
type-0 and type-i meshes in the plane x = 0 . A close-up of the meshes in the same
plane in the vicinity of the store is shown in Fig 15. The overl p between the two
type-i ncshes presents no problems, since, at its outer edge, each mesh exchar.ges flow
dat with the main mesh. Finally, Fig 16 shows the meshes in the 'wing plane', z = 0
for the starboard wing. Due to current memory and cpu limitations, flow calculations
have not as yet been run for this configuration.

5 CONCLUDING REMARKS

Feature-associated mesh embedding should develop into a f±e±le method for qener-
ating high-quality meshes for complex aircraft configurations. Development and testing
of the mesh-generation and flow codes is a slow and painstaking process, because maximum
generality is being built in at all stages. However, when the full package is complete,
configuration components may be modified, added or removed without the need for global
changes of mesh topology. The approach may be particularly useful for configurations
having components in relative motion, such as those associated with store release.

REFERENCES

1 Sengupta, S., Hauser, J., Eiseman, P.R. and Thomnson, J.R., (editors), Numerical Grid
Generation in Computational Fluid Mechanics '88, pub Pineridae Press Ltd, 1988.

2 Albone, C.M., "An approach to geometric and flow complexity usinq feature-associated
mesh embedding (FAME): strategy and first results", in Numerical Methods for Fluid
Dynamics II, edited by K.W. Morton and M.J. Baines, pub Oxford University Press, 1988.

3 Mavriplis, D.J., "Adaptive mesh generation for viscous flows using Delaunay triangula-
tion", in Numerical Grid Generation in Computational Fluid Mechanics '88, pub Pineridge
Press Ltd, 198R.

4 Albone, C.M., "A second-order accurate scheme for the Euler equations by deferred
correction of a first-order upwind algorithm", RAE Technical Report 88061, 1988.

5 Chakravari-hy, S.R., Anderson, D.A., and Salas, M.D., "The split-coefficient matrix
method for hyperbolic systems of gas-dynamic equations", AIAA Paper 80-0268, 1980.

Copyright
©

Controller HM1SO London
1989



13-S

Fig 2 Type-1 surface mesh ior inviscid flows

Fig 1 A regular mesh of irregular shape Fig 3 Type-1 surface mesh for
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Fig 7 Meshes for a NACAe-l0012 aerofoil
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Fig 10 Meshes for two NACA 0012 aerofoils: separation 0.25
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Fig 11 Meshes for two NACA 0012 aerofoils: separation 0.5
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Fig 12 Meshes for a sphere: centrelin~e plane
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Fig 15 Blow up of Fig 14 in the region of the store
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ON THE WAY TO AN INTEGRATED MESH GENERATION SYSTEM
FOR INDUSTRIAL APPLICATIONS

by
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SUMMARY

The main features of some specialized batch modules which have been developed recently to meet the requirements of a grid
generation for complex configurations, are described in brief One module is a combination of an algebraic grid generator for the deter-
mination of a surface grid and the far field boundary. and an hyperbolic grid generator for the sectionwise calculation of the corresponding
orthogonal internal grid lines. Two other modules are concentrated on solution adaptive grids - either using algebraic redistribution pro-
portional to the curvature of a typical flow filed describing function, or by solving elliptical partial differential equations resulting from the
transformation of the Poisson equatioa from the physical space into the computational space Adaption of the grid to pressure gradients
and to the total pressure loss is done by replacing the source terms.
The first part of the paper however is the description of the graphic-interactive program-system INGRID. which already comprises several
standard techniques to generate composite volume grids around arbitrary complex configurations, and which has the potential to become
an integrated system to match the demands for a gerieral productive mesh generation method
As application examples several grids are shown illustrating actual problems of external aircraft aerodynamics ground-vehicle aero-
dynamics and of internal pipe flow.

1. INTRODUCTION

Within the last years the pretensions concerning the productivity of procedures for the numerical simulation of flow processes raised
more and more A high accuracy of the results is expected, the processed configurations should correspond to the real geometries with
idealizations as small as possible Especially the use of methods based on the Navier-Stokes's equations require a high resolution of
details within the discretization of the computing model

Besides those facts the operational area of the procedures is widened permanently There is still the classical problem of the sim-
ulation of flows around aircrafts. but investigations of the flow behaviour at road vehicles and vessels are accomplished as well Also the
industrially very interesting field of internal flows i.e flow through machine parts, tube branches pipe systems or power plants is accessed
more and more by numerical investigations

This development is supported by increasing computer capacities and performances The average number of computing points for
one investigation could be increased clearly - however the resulting computing times remained further acceptable As a resume it can
be said that the computational simulation of flow processes of all kinds has taken an essential role within industrial research and devel-
opment

However. there is one non-negligible subtask which is still solved unsatisfactory up to now It is the geometry processing and the
grid generation which becomes necessary before a computational analysis Particularly by the increased abilities of the simulation pro-
grams the weaknesses of the so-called preprocessing has become obvious Lacking flexibility concerning changes of geometry types as
well as the awkward handling of predominantly batch operating grid generators causes a disproportionately high time expenditure An
,bu..dace of more or less user-friendly grid generators with different degrees of automation have been developed they also work still
satisfactorily in practice. but only as long as no substantial changes are made within the task At the latest then indeed the input and the
program itself has to be modified Time consuring reprogramming and testing become nccessary Add,,ionally to this modifications the
conventional approach of batch programs in combination with plot procedures does no longer represent the state of the art anyway De-
rnition of parameters, generation of grids their visualization and their inspection are single steps within this approach only their iterative
application to a problem can lead to a finally acceptable computing model With respect to a fast reliable and highly flexible mesh gen-
eration process the necessity of an integrated system comprising some proved modules but offering also the advantages of the interactive
technique is Obvious

A first success in this direction arose with the establishment of the program package INGRID (INteractive GRIDgeneration system,
for the generation of blockstructured volume grids During its application in combination with an (arbitrary commercial CAD-System there
are no restrictlions with resp. "to the geometry to be processed Grids for internal and external flows for Euler- and Naver-Stokes-
simuiations therewith can be be generated visualized controlled and modified within shortest times During construction of the program
system some already proven batch modules have been used However, as the system is still open with respect to the coupling of further
routines also the two methods which are still under development and which are presented at the end of this report could be connected
to the interactive operation mode

The system INGRID at the present time is aliready a tool to be used productively for the generation of biockstructured grids for field
methods Long term aim is the completion to a flexible and versatile supplementary aid, which integrates the diverse common procedures
for the necessary preprocessing to only one interactive and user-friendly package The modules described in chapters 3 and 4 up to now
a-e still batch operated - but within the near future they should also become integrated into the interactive environment

Indeed all of the presented grid examples were used to calculate flow solutions, but meshes generated the same way could be used
also for the predection of radar backscatlering Either surface grids according the concept of the physical optics or the volume grids for
the solution of Maxwells equations (electrodynamics) [1]

2. THE INTERACTIVE APPROACH

The base of any industrial flow simulation is either a protected or an allready existing geometrical shape 'Computer Aided Design'
-systems nowadays are installed in most of the companies where geometrical models have to be treated with respect to any development
and/or manufacturing Graphic terminals or even workstations came along with those CAD-systems. and a lot of engineers became fa-
miliar with the interactive techniques to communicate with commercial application programs via messages and menus Additional software
libraries became available which enabled a programmer to write his own custom tailored application interface, where specialized algo-
rithms are combined with the ability to create display and interact with graphics data Then it was at the time to rearrange the traditional
batch oriented grid generation procedures according to this popular working method The advantages are obvious within a dialog and
under permanent visual control step by step (and even backwards) a basic geometry can be upgraded to a final network Several proven
algorithms are available and can be selected and variations can be tried to find the best possible solution Generation parameters may
be modified rapidly to study the mesh behaviour Routines to check the mesh quality can be used, so that possible mistakes become ob-
vious immediately but with the chance to be corrected without delay As an intelligent workstation is used. generation algorithms data
administration and interaction control are running on a host-computer while visualization and transformation are downloaded to local
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processors, thus saving computing time and accelerating the process. In addition, the comprehensive possibilities of 3D-representation
of such a modern workstation, supplies picture sequences, which some years ago were only possible with complex trick film techniques.
The overall cycles of geometry changes, paraMeter variations, mesh control and visualization, formerly taking weeks with previous meth-
ods, are compressed to several interactive sessions within days. This technique 'allows the user to concentrate on the geometry of the
problem rather than on the mechanics of the processing programs' as Eiseman and Erlebacher [2] remarked.

2.1 Preparation of the Geometry

The entire procedure of a gridgeneration, independently of the supplementary aids with which it is accomplished, can be divided into
two sub-tasks geometry-preparation and grid-generation. The first part leads to a configuration description by means of suitable ge-
ometrical elements Since for pure geometrical tasks several interactive program systems are already existing and available within the
industry, such a softwarepackage and an appropriate installation can be used The starting point should be a sufficiently detailed geometry
model of the desired configuration available within such a system. As an example a CADAM wire frame model of the coming Dornier utility
aircraft Do 328 is shown in fig.1.

Figure I. Some sections of a Do 328 CADAM wireframe model description

Using the standard functionality of the CAD-system, the shape and location of the far-field boundary is defined and the block de-
composition is carried out. Fig.2 shows the far-field and the overall blockstructure of the example geometry

FIgue 2. Far feld bouwidy and possible block arrariement
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The representation of the body surface is to be subdivided and arranged according to the chosen block-topology. Fig.3 gives a more
detailed view of a prepared configuration.

SX\ / -
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Figure 3. Do 328 - prepared surface representation and some blockboundaries

The result of the first step within the CAD-system and a subsequent interface program is a dlatafile containing the so called base
geometry This is a collection of geometry elements - more exactly' points and point-sequences - giving the necessary information to
provide a sufficient description of the overall geometry. Sufficient in that context means that the interpolation procedure based on a cubic
spline formulation and used during grid generation should be able to meet the actual geometry shape within acceptable tolerances

2.2 Grid generation using INGRID

For the second step the user interface application program INGRID containing the descretizati-n algorithms is activated First of all
from the displayed base geometry the elements which should form an active block have to be selected The uiui- _'.~ edges in-
plicithv assigns the counter directions I J and K Optionally at block faces additional surface lines can be specified - this is necessary es-
pecily for all block sides located next to twice curved body surfaces. After the logical connections between all elements of one block are
LOMpleted. point quantities and up to twelve distribution functions can be specified All edge elements are treated one after the other
The redistributed nodes are visualized immediately and can be withdrawn if the result is not satisfying During generation for the very first
block of a configuration all these parameters have to be specified by the user - respectively selected out of the possibilities offered within
pop-up menus While treating subsequent blocks, faces of neighbouring and allready existing meshes might be called on to the screen
and counters and distribution functions can be transferr~d -ensuring consistent meshing between adjacent blocks When the node dis-
tribution tor all edges is complete the block surface grid generation is executed. Finally, after specifying the desired type of integer plane.
the volume grid generation is performed tor the active block and results are shown plane by plane

While executing the step by step generation for edges faces and internal counter planes forming the volume-grid, at each time the
momentary results might be either accepted. optionally be modified or withdrawn Additional routines optionally can) be selected, for
tracing coordinates and integer counters tor local and global grid modifications and to hunt up 'negative volumes* After the active block
has been completed the base geometry is recalled and the procedure restarts with the selection of the geometry elements for the next
block All these actions nave to be repeated until all blocks of a complete configuration are processed Fig 4 snows the final mesh at the
aircrafts lbodl surface

Figuire 4. Do 328 - final mesh dwnrbution at th surface

2.3 Implemented Generation Techniques

The basic routines of the program system INGRID are partly common algorithms, proved to be versatile during countless applications
within batch oriented procedures, and paritly new programmed modules which were tested and modified within interactive sessions The
core of the generation part is a procedure for point redistribution along curves in space: similar procedures are in industrial use to produce
thp necessary data for NC-milling Starting with a number of base points, first of all a parameterized cubic spline is evaluated, its formnu-
lation allowing only pure interpolation without any smoothing After that, the generation of intermediate points along those splines is done
according to a desired one-dimensional distribution As there are no restrictions in this method any imaginable point distribution can be
achieved
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The application of this procedure to block edges leads to the desired grid points. For block surfaces the same procedure is applied
along all given surface-lines and at least with two sweeps into the different counting directions. In the case of complicated boundaries one
ore two repetitions might become necessary until the changes within the distribution become equal to zero Finally again the same
respline procedure is repeated in the various space directions until the volume discretization is complete But as block faces and internal
integer planes are usually bounded by three or four edges, where in a general case each might have its own distribution function, some
blending must be done for the interior. Taking into account the influences of the distributions at the boundary curves is done by a repetitive
mapping procedure
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Figure S. Figure 6.
Generation of grid points at block surfaces Mapping procedure to evaluate internal distribution functions

(2 sweeps)

Consider a four-sided physical region whose sides are fl, f2, gl and g2 (fig.6a). ul. u2 v1 and v2 represent the normalized parametric
distribution functions of the four sides (fig.6b) As the respline procedure needs an initial solution, for the first sweep (in the f-direction) a
linear connection between opposite boundaries is assumed Its direction has to be specified interactively to pay attention to the actual
shape' The calculation of the line-intersection within the parametric space (c) leads to a weighted distribution function u. which can be
applied to respline the initial solution within the physical space (d). For the second sweep (in the g-direction) using the same steps the
weighted distribution function v is calculated (g) and applied in the transverse direction (h)

The procedure of node redistribution within integer planes can be applied repetitively for arbitrary plane types (I.J.K=const) The
more complex the block shape is, the larger the numoer of sweeps will be necessary to achieve a satisfactory solution

The method of Thompson et al [3]. wherein the grid is derived from the solution of a set of inhomogeneous Laplace equations is also
implemented within INGRID and can be used opi onally to do mesh modifications During applications for various geometric shapes. it
turned out that results of the redistribution method could be achieved faster and were often more suitable than the comparable solutions
of the differential equation method Fig 7 gives two examples with different boundary shapes

b

Figure 7. Results of node redistribution (a) and differential eqaation method b

The left hand side shows the solution of the redistribution method achieved with I and 3 sweeps, while the right hand side shows the grid
generated by solving the Laplace equations In both cases the interior of the redistributed mesh is oriented much closer to the given dis-
tribution at the boundary curves Without the necessity to adjust control functions, as required if the Poisson equation system is used the
redistribution method immediately results in a smooth mesh. keeping the boundary characteristics proportional throughout the whole field
An additional and essential advantage of the method is its ability to apply it directly to arbitrary body shapes As it works along real
3D-curves, keeping given shapes all the time, this simple and fast method represents an attractive alternative to the much more compl-
cated formulations of the specified surfaces according to Thomas [4] or the Gaussian surfaces as described by Warsi [5]

2.4 INGRID Environment

During INGRID applications all the graphic support an intelligent workstation being able to give, cqn be used Local real-time ani-
mation of the wire-frame representation and selective 'show/noshow'-procedures of grid planes enable the uc-r to get and to keep con-
tinuously a complete overview of all details of a spatial network. The program development as well as the examples presented here were
carried out on a SPECTRAGRAPHICS 1500 workstation connected to an IBM 3090 host computer The base geometries were established
by means of the commercial software packages CADAM and CATIA The mesh generator with the user interface application propram IN-
GRID uses the device-specific soft- and firmware called PRISM for graphic access.
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2.5 INGRID Application Examples

Fig.8a indicates the block architecture of a local O-mesh imbedded in a global H-structure for a wing with pylon and load In 8b the
grid on the surface is shown as well as within the plane of symmetry. The appropriate computational analysis was done to investigate in-
creases of the drag due to local transonic effects.

.................................. ............

Figre 6. Local O-mesh imbedded into a global H-structire for wing with pylon and load

Fig.9 gives a glimpse of a composite grid arrangement for Navier-Stokes analysis of a car configuration. Blocks with very high resolution
are located within the expected boundary layer region surrounded by a global H-structured mesh

Figure 9. Composite grid for Navier-Stokes analysi of a road vehicle

Fig 10 shows an internal flow problem - a segment bend pierced by a valve lifter (a) gives the original surface model and (b) the base-
geometry, both done with CATIA Views (c) and (d) show some details of the generated grid in the interior and on the surface of the con-
figuration
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Figure 10. Segment bend pierced by a valve lifter- geometry model and generated grid

More interactively generated examples are given in references [6] and [7].

3. COMBINED ALGEBRAIC-HYPERBOLIC GRID GENERATION

For the aerothermodynamic flowfield analysis of reentry vehicles within the Mach number region 2 to 20 a special approach has been
developed At the present time this procedure is still batch operated, but because of its modular structure it is well suitable to become
integrated soon into the interactive environment of INGRID.

The process features the steps as described in the following First of all based on a geometry definition a surface grid is determined
by the application of an algebraic grid generator, A sectionwise point distribution is generated, where the grid density is adjusted ac-
cording to the local curvature of the geometry Determination of the farfield shape is done by prescribing a lower and an upper angle of
inclination within the plane of symmetry. Those values are adapted to the Mach number and the angle of attack in order to optimize the
grid without wasting points in regions of low interest. The cross section shape of the farfield is that of a general ellipse, where the ratio
of the main to the sub-diagonal also depends upon the freestream conditions. After predefinition of such a farfield, it is treated with the
same algebraic grid generation process as the surface The internal grid points are calculated using a 2-d hyperbolic algorithm, which is
applied sectionwise The resulting orthogonal grids are especially desirable for complex shaped cross section contours As for hyperbolic
marching the farfield distance can only roughly be prescribed, however not a specific shape, the farfield definition of the algebraic grid
generator is used The intersection of the radial hyperbolic gridlines with that boundary is de;ermined and the internal hyperbolic grid is
then redistributed by a local adaptlion within each section Either an affine radial stretching according to the hyperbolic grid can be used
whereby the grid height of the first cell is kept Or a geometrical stretching function with a fixed initial grid size can be applied A pro-
cedure generating a smooth transition from an internal algebraic to the full hyperbolic grid is also available Within an application for the
Hermes configuration additional stretching functions are used to ensure nearly equidistant distributions in the region of the front shock
wave Other input parameters allow to avoid crossovers in concave regions or for example to even out the grid size in tangential directions
in prescribed regions This sectionwise application of the hyperbolic grid generater as well as the reshaping of the internal grid ir some
cases may cause minor grid irregularities between neighbouring sections Therefor subsequently a 2-d and/or 3-c Poission solver or a
3-d smoothing operator can be applied [8]

" ,,t, - - ":
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Figure II Figure /2
HERMES- Grid within typical cross section SA ENGER - Some grid planes and their topolokgy
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4, ADAPTIVE GRIDS

It is well known, that the accuracy of a numerical solution depends on the fineness of the mesh - the finer the grid, the more accurate
the numerical solution will be. The presence of large gradients causes the error to be large in the the approximation of the derivatives
Especially in the presence of shock waves, more artificial diffusion must be added to retain adequate smootheness of a solution That is
the reason for an urgent need for schemes which are able to resc:.,e those large gradients without the necessity of adding additional grid
points An adaptive scheme moves given grid points to regions of high gradients in cases when the locations of these gradients are not
known a priori. An adaptive method reduces also the total number of grid points required to achieve a given accuracy. Adaptive grid
generation schemes can run in partnership with a flow code and dynamically adapt the grid to the evolving flow field, which is known as
dynamic adaption, or they can adapt one grid which will remain invariant for the entire calculation, which is called the static adaption

4.1 GRID ADAPTION BY ALGEBRAIC REDISTRIBUTION

The first approach described her-, is based on an algebraic generation scheme (see for example [11], [13]). The redistribution of
grid points along arbitrarily shaped lines according to the curvature of a sensor function can be used for the static adaption of 2-D grids
and also for the field adaption of 3-D grids It is assumed that the redistribution of grid points should be based on the distribution of the
curvature of a typical, the flow field describing function u (for example: surface pressure distribution). The curvature is obtained at each
point i by the central difference approximation

a, = u, == '+1-{ U," U - U-1 + oWh2 -h) (4.1)

using forward and backward difference operators For sake of simplicity we may set a, = a, and a, = a,-,, By nomalizing the curvature with
the constant step size h,

h=XN - X1  42hi= N--(4.2)

we obtain a weighted measure k, of curvature at each point:

k, = ha,1  (4.3)

with

h, = x, - x-_1. (4.4)

In order to damp extreme values in curvature and to increase the interval of influence, a new measure of curvature.

2,
a,- - k i=n+ 1, N-n, (4.5)

2n + 1 Z-

is introduced for inner points At boundaries a similar but one-sided formula is used In all cases described here. a value of n = 1 was
used. resulting in smoothing three points

The transformation function is finally obtained from the integration of alpha

S, = (4.6)

with S. = 0 One notices that the transformation function S(x.) has its maximum slope where the curvature of u(x) has its maximum curva-
ture and its minimum slope where the curvature of u(x) is also minimal The table of values obtained from S = S(x,) can also be used in
its inverse form x - x(5,) By dividing the interval

S,= x4 7)

into N -1 subintervals

S =S, 23. N,
N -- i

one can obtain through interpolation the new distribution x = i(S,) In order to guarantee monotonicity this interpolation must be linear
then from the existence theorem the inverse function exists because S. is continous

The new step sizes found by the procedure lust described depend completely on the behaviour of the function u(x,) If this function is
piecewise linear, some of the .7 become zero This can lead to uncontrollably large step sizes Since however, the accuracy of numerical
methods always depends on the chosen step size, an additional condition must be introduced, controlling the maximum interval between
two adjacent points The step parameter P is defined as

ihm. = P h (48)

Where h is again the step size for uniform point distribution The gradients of S(x) are now compared against a minimum value

q = # 0 (4.9)(In - 1)hmax

which is controlled by P Therefore it proves neccessary to use an additional linear transformation in order to ensure such a minimum
gradient of value q Figure 13 shows an example for this adaption techique for a C-type mesh around an airfoil
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AIaptld Grid .

Figure 13. RAE-2822 Airfoil- 2-D grid adaption by algebraic point redistribution

The initial point spacing is already r,jn-uniform. having more concentrated points at the leading and trailing edges, in these regions
a pressure distribution is assumed a priori showing larger curvature The adapted grid is based on the surface pressure distribution cal-
culated by means of the initial mesh. Therefore concentrations of mesh points at the approximate middle of the upper and lower surface
as well as at the trailing edge are due to the curvature of the pressure distribution The effect of the adapted grid can easily be recognized
in the surface pressure distribution as well as in the surface skin friction On the upper surface the shock region is much better repres-
ented as well as the pressure plateau in front of the shock Of significance in the prediction of the aerofoil force coefficients is the calcu-
lation of the wall skin friction coefficient c, Furthermore, but already indicated by the pressure distribution, a much better representation
of of the shock region can be obtained by the use of the adapted grid. More details about this 2-D grid adaption technique are given in
[11]

The same technique was applied for the field adaption of the grids for the flow calculations with a Parabolized Navier-Stokes (PNS)
method [12] Within the cross sections in streamwise direction, the grid points have been redistributed along the radial coordinate di-
rections Figure 14 shows the coordinate systems and the static pressure distribution for an ogive in supersonic flow The better resolution
of the shock can clearly be seen and the adapted grid shows already the position of the shock.
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Figure 14 Ogtve at supersonic flow - 3-D grid adaption by algebraic point redistribution

4.2 GRID ADAPTION WITH LOCAL REFINEMENT

A second adaption scheme is used for the generation of 2-D block structured grids with local grid refinement This method is based
on the solution of elliptical differential equations including weighting functions from the flow solution It is suitable for the generation of
2-D adapted block structured grids

The use of adaptive grids in combination with local grid refinement combines the advantages and cancels the disadvantages of each
method So the use of adaptive gridi; requires a high number of grid points to avoid jumps in the grid spacing On the other hand, the
use of fine subgrds would be a very good approach for viscous flows, if the boundaries of those subgrids could be adapted to the structure
of the flow field If additionally a block structure, which is adapted not only at the geometric requirements but also at the structure of the
flow field (see for example refs. [13] and (14)), is used, we will have a very effective discretization of the flow field, (adaptive grids with local
grid refinement) and also a very effective procedure for the tow solution by the use of zonal approach (Euler/Navier Stokes) which due to
the block structure can be done very simply



With the computational cordinates ( , I) and the physical coordinates (x,y). the commonly used elliptical partial differential equations
suggested by Thompson [15] for grid generation can be written as:

A Xt +B C Xt, + Q/ X + QJ X,7 = 0 (4.10)

wherein the X = (x,y) are the cartesian coordinates of the grid points, The mixed derivative X, can be neglected without changing the
elliptical character of the above equation. The constants A, B and C are fixed by the transfomation operations between the physical and
the computational space, only the control functions QI and QJ can be used for grid control and for an adaption of the grid According to
Thompson [16], adaptive grids can be constructed by inclwing weighting functions of the flow solution in those control functions

The condition for a one dimensional adapted point distribution along the Y- or i- direction in the computational (index) siiace is de-

scribed by the relation:

W1o.'x, = const.

Where W, is any weighting function. in the computational space this yields to

W(v) x1 = const

or

-i- W(1 ,-xt = 0 (411
+ W()

which is a one dimensional Poisson equation Compared with the equation (4.10). the above equation is identical with the one dimensional
elliptical PDE. If in the one-dimensional version of (4.10) which is

A Xt- + Q1 X = 0

the source term QI. which is used for grid control is replaced by
WitiC

W( ')

the one dimensional discretization will be adapted to the weighting function Ww In two dimensions the adaption of the grid to a weighting
function can be achieved by replacing the weighting functions in (4.10) by

QI = QJ +--Q1 +

where W, is the weighting function in the 1 or i-direction. W,,, that of the 1 or j-direction With those modified source terms the PDE (410
can generate solution adaptive grids if the weighting functions are taken from the flow solution The choice of the weighting function de-
pends on the nature of the flow field In flow direction and along surfaces, the weighting function should be coupled with the pressure
distribution and in I direction, which is the direction normal to the main flow direction, the weighting function should be coupled with any
indicator for viscous effects Numerous experiments with different weighting functions have shown that the best weighting function for the
computational i-direction is given by the relation

ilp p
W( LP- 

+ ' 
,x (4 12)

So the weighting function is a combination of the first and the second derivative of the pressure distribution This gives a grid
adaption to pressure gradients and extreme values a and #i are weighting parameters by which the user can make the first or second
derivative more ore less dominating In transonic flow, the gradient of the local Mach number is also a very suitable weighting function
adapting the grid to shock waves Normal to surfaces wh-ch is usually the in or f-direction possible weighting functions may be the total
pressure loss- or the vorticity distribution 1I was however tound out that the total pressure loss is the rn,.-st suitable parameter to drive
the grid adaption to any flow field discontinuity because its values move within a small range whereas tne values of the vorticity spread
over several powers of ten So the weighting function for the j-direction has been chosen as

ProW)
1 -y1- 14 13i

Where -, again is a scaling parameter Of course the weighting functions have to be smoothed and are normalized with the extreme
values To avoid an "overadaption' of regions with extreme gradients, it is also necessary to damp extreme values in the weghting func-
tions The grid adaption can be performed 1-1 3 levels Adaption of the surface point distribution along the surface to the surface pressure
distribution, adaption of the field grid points normal to the flow direction, and the adaption of the field grid points in flow direction The
perimeter adaption along the surface is done by the solution of a one dimensional elliptical PDE

W(,
W-, x x = 0 l4 14)

If the above equation is approximated by finite differences in the index space this leads to a simple tridiagonal equation system
The weighting function is g;ven by equation (4 12) For this surface adaption, only the surface pressure distribution or the Mach number
distribution along the surface is required For the field adaptions the weighting functions according to eqs (4 13) and (4 14) are taken

The local grid refinement is treated as follows First the uniform, finest grid is generp.ed. Then the coarser blocks are obtained by
eliminating each 2 . 4- 8 grid point in i- and/or f-direction For the grid adaption. the weip'iting functions of the flow solution are interpo-
lated into the uniform fine grid anl the grid adaption is performed for this uniform fine grit and finally the coarse subgrids are regenerated

If the flow solution operates in a sequence from coarse to fine grids (multilevel i, id technique). at each switch from s coarser to the
next finer grid this finer grid can be adapted by the results of the oarser grid So th'. grid points are automatically concenlrated in regions
with highly dominating viscous effects

If once the weighting parameters a, v have been calibrated for a certain configuration, the described adaption method is very
stable It is very suitable to all flow fields wich have viscous regions embedded into an inviscid outer region For internal flows however,
the viscous regions can be extended over the complete flow field and the total pressure loss can be no suitable weighting function In those
cases the second derivative of the velocity profiles were a better indicator for separated regions It was also found, that the field adaption
to the field pressure distribution has no advantages as long as there are no pressure discontinuities in the flow field The adaption of the
grid to the surface pressure distribution is sufficient and can be done once at the beginning of the calculation Figure 15 shows the flow
field around a 2-D fast back car body and the adapted grids at 2 different solution levels In the flow field one can recognize separation
at the rear wind shield, the wake region and the boundary layer 3long the fixed ground plate behind the car The grid is adapted to the
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surface pressure distribution by the solution of equation (4.14) with (4.12) as weighting function. This adaption has been done once at the
beginning of the calculation and gives a concentration of grid points in regions with pressure 6radients and extreme values The field
adaption was carried out two times during the solution process taking (4.13) as weighting function in f - direction and without field adaption
in -direction.
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Figure 16 gives an example to, the influence of the grid adaption on the surface pressure distribution The configuraton is an ide-
alized midseci.on of a racing car and the grid is a H-type grid with local grid refinement in the inner blocks consisting of a total number
of 22536 cells In the initial grid the grid points around the contour are concentrated at the leading- and trailing edge region In the c,-

apteo grid onvl the point distribution around the contour was adapted to the surface pressure distribution and again the grid points are
)ncentrated in regions with pressure gradients and -extreme values The surface pressure distribution is the result of a 2-D Navier Stokes

anatysis at a Reynolds number of Re = 1 8 x 106 With the c, adapted grid, the pressure distribution become, !:moother the gradients
and the extreme values are better represented

An example to the reduction of the numerical error is given in Figure 17
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1Igw" /7 24u Grid adaption by elliptical PDE's

In the non-adapted coarse grid a 2-D Navier Stokes calculation was started with the aime to get a solution for the adaption of a fine
grid As it can be seen in the plot of the convergence hehaviour, it was impossible to C"t a converged solution in that grid With the
adapted grid (along the surface to the presc ,re distribution according to (4 12) and normal to the surfaces to the total pressure loss ac-
cording to (4 13)) a very good convergence rate was achieved



The Figures 1ff and 19 and 20 show the use of the static grid adaption scheme witnin the multilevel Cid technique during e 2-D
Navie Stokes calculation for an airfoil with a 30 degrees deflected trailing edge flap

------- ---- - "

i -. u fl itr i -oa.C.t' 1:ri(

f-igw- re ! gure 2i
Ajrfodi wil '7air- adapted medium gri, izrfoid with /?ap - adapted line grid

To avoid the typical singularities of a H-type grid a systerr of patched block structured C - meshes has been generated for that config-
uration Both airtoi! and flap have a thick trailing edge and the C - meshes are closed by an additional trailing edge block The flow
solution was started in the coarse mesh The medium grid of figure 19 is adapted to the results of the coarse grid and the development
of the boundary layers and the wakes can be seen in the medium grid where an adapted iner grid is embedded into a coarse global grid
The final fine grid (40000 points of figure 20 is adapted to the result of thE -nedium grid and Shows a very fine resolution of all viscous
reclons

5 CONCLUSIONS

There is stil a lot of work which has to be done forming a really flexible mesh generation system capable to handle all the venous
problems which are of industrial interest P :imrsing new batch modules as described in chapters 3 and 4 are under development for
special applications But the location where more and more meshes are generated effectively nowadays and in the future, is the graphic
workstation CAD-systems and graphic-interactive application programs each provide a great help within its part of the complete working
process concerning handling and control of geometries and meshes The grid generation system INGRID is a step towards the integration
of standardized procedures and also new developed modules with the aim to form a user-friendly and produclively applicable tool for the
mesh generation Integration of further modules into the current system will enhance its versatly and provide a powerull collection of
tools r match most of the industrial CFD-tasks The generation of complex grid structures is simplified clearly by the application of such
ar interactive procedure - various tasks for general configurations become solvable rationally only due to such an approach
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GENERATION, OPTIMISATION ET AIAPTATION
DE MAILLAGES MULTIDOMAINES

AUTOUR DE CONFIGURATIONS COMPLEXES

Olivier-Pierre JACQUOTTE
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RESUME

Cet artice dtcrit mi etdlode qili a t t dleveloppe e pour la const ructioni de miaillages autour de
configurations comtplixes. Cet Ic iictiiodi permeit tiout d'abord tine g~iiration aig0hriqiie die type
muitidornaine reposawi sur tinle piart ition dui domiie dei calcul en sotis-doutaitics iiexaedriqiies, citacun de

ces sous-do Inatt ies etat Iliajilleeiriirv strrtutr6-i tille ittetlioi(I op d'liisaitiott CSt eiStlitc ittiliSee p)our
am~iiorer les qpalit~s du iTilage cI ell jiartictilier st's pioprietts met riquets, oul pour I'adnpter i la solution
physique que Voun disirt ralettlcr stir cc utailhige. l,:1 coliillisoli dei CCS ileix iritloties, ill ilt idi(lflaiIle' et
variationuelle, es5t. eni coiir de uie c-it oeuivre it les pureierits result ats oliti'iis sotit prc'seitt'S.

INTRODUCTION

Depuis plusicurs anitrfs, avec I 'nrrlve des super-ectiiateurs, des progr~s retiarquables out kl observ s
dans les calculs d 'iiioil.'iients au tomi de configiiratioils t ridi ineusioli wiles. Ces progrks cuiiceuiieiit i Ia fois
la cornlplexite des mtodics mat lii(iliiiqujes uittlis(:s it la toinilexite des f'oruies gi~omit riques. Les (iiffc rcits

rnoddes math~rnatiqiies '\-ont ults meithlod" esi liet t s pertutrbuatiotis, liniiaiisees oil t rahssolilques, aux
equations de Navier-Stoki's et atix miodles dei couplu:ige iltide juarfait- Iluide \visqueux eni passat par les
equations dui potentiel cl tI'Lutiicr. [)ar ixcitille, pouir till aiiori do t raisurt, leq conigurationis etties soult
pass~es progressivenit Wluili Voiltire isole i l'aVioti etoililect ave it's uijolictttills siic,'ssivcs dlu fuselage,
de nacelles et, tie mits. La construct ion de jitiill ages a iltour de tellcs contfigu rat ions est devenue linte t ache
de plus en plus cornupiqihY et, crticiale pour oluteiir dit botns rsuiitats.

De nomibreuses stl-at~gies ont .' dt~ic\-cojiltccs tItitic puart piour olttenr ces inaillages, el (lautre part
pour pouvoir les utilise'r dauis les co(des tie en cul s ex 1s i its ott en cou s de deveiopjuetent. P1 usieurs 6t apes
peuvent, cependant tre tiistiiigtics (bus le proressus d c onstructionu de utaillage: title preierhe 6tape de
gln~ration consiste A reiiplir i'espace tritinsiuiutc tie itoeuts tie iniliage relics t'litre cux liar lil rcseau
d'ar~tes pcrnettant, tl'ititifher citatitiA (ICctr Voili (ctnulectiqie (Iil iaillagc) ct tie dt~lintir de-s volumes
'i6nentaires appeles cii u les, milIiis otl 6ltits siloit les ait Icirs oil lcs codes dic resol ution u tilisanit ces
maillages. De llolnhreuse's classes de limallagi'ciivn ci rt distiitgiicts: ci's millaag('s pettr te structure
rigulire ou lion1, dle tylid iiultidttliiiaic ml'(cc oit salts iuctvc litclit , aic oit salts corrt'spoitdaitee des itoeuts
aux interfaces entre les; doinaines ... (lnt' dcuii~i'ie clp'consist e A sassitrer (lilt' Ic iiiillagt' oiitt'Ii upossede
Jes, proprifi m i l~riqu- njl' I cesa iri's pittr It- en Icu i, i' cou Ii,,iiiit. C cci peit I Irc a priori r~a I so. par
certaines metliodes tie g~i~ratioit o)u ~ett 't ic ohtcuu a'11 "1 stei iri par i(ilecieiit tde cert nins uioeuds tluI

illage initial sanls enI changer la tupiulogie. lfiie I roisi('llii c(i' CWNitWV, ap 111ni Ca)lclit diet'UItlent. sur

un mallage tnliaI, A cowltrulr lilt ll10llt'i'll iiuaiil:igi' IllilIIx wlti A la soliiion A taicllr. ( 'ii peut, 'tre
eflectu par ajoilt ott stipressiui~ de iloellis (iill nwilitgo a%-ic cliwilgi'lm(' de' Ia topologitc, oil par
diplacemueitt. ties ilotitis, eli coulINralit Ia miel1tl '11t ittlte. (it lwititiei A li'llu'r Ii's lucuids datis les
regions dk-sirees.

Nous prewionls ulans co naicli' 1t, ll' d e tui'W~c toppi' pou ii:aiiser ciri als dt' tes ojectifs. La
prerni~'re Itartie ('-(r conllsacrl'(' Ain ha i:tli' dci gilil114:11o choiuie qu criltil dc' conitriire til maillage
algebriquie friill idoimfali' par bltc 'lllti'mm ";tlii'tttll l ;it'i't millc~iO'ili'. tt's; itiois amil interfaces.

N"ouis illiliuous ulanN Ia dutxi'iiu p.lal ic tiillliill a1:1 ln iii'~m itiilt iuiriuc tellt prnittulill't ire

Is I ru~ile Har olIt's ill l 'lulif;s1 faaI IsIIl iqiti' 'ImI aiuiH Irtti trill:ge iiilli'ii pit ii, luki'lK cifil puui
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STRUCTURE MULTIDOMAINE DU MAILLAG E

Nous presentons ici les caracteristiques de la inithiode inultidomaiiie (Ieveloppe: celle-ci consiste ii tirer
parti dIe la siimplificatioii procur~e par une num~rotationii? trois indJices "i, j, V' des iioeuds (du inaillages o6~
le triplet (i, j, k) parcourt la boi te 10miin x l1im] x 1I ki] de N3 . Cependant un tel ensemln)e de points
constituant un bloc est rarenient assez gkinkral pour prenlire eni comlpte tontke Ili coniplexitei du doinaine.
line id~e intuitive periiiettant, d'obtenir un miaillage complet consiste i diviser de manih-e arbitraire le
domaine en plusieurs sous-domnaines hexae~driques et A construire danis chiacun d'eux un tel bloc 'i, j, V'.
On parlera alors d'approche niultibloc oiln ultidornaine. Cependait dif~reiites d~coripositions sont
possibles: ces sous-donriainies penvent se recouvrir on avoir des intersections dIe volume nut, e(, dlans ce
dernier cas, les nocuds sitmns de cliaque cet4 des interfaces de deux blocs peuvelit e.tre (listinets onl anl
coniraire se correspojidie. C'est cette derni~re approche, compatible avec la Nktlio(e des l16mnts Finis,
qui est coiisidr~e ici. A quelques differences pr~s, cette miithode est (Iailleurs trres souvelit, rericontree dans
]a Iitte'rature conssacr~ev atix miaillages et est la plus fr~quemiiieit itailise, 191. IDiffrctes italics soot
consid~r~e-s et seront. dcrit es ci-dessous: partition de type 'Ek'rnents inis" (lIt (Iomiiiie eni blocs, inaillage

k", , des blocs, regroupeien t st ructui' des balocs en sous-(Ioriiin(.s de caIc ul.

Partition du domaine en blocs
line premniere partition du doinaine de calcul Q de forme arbitraire en blocs est consid~ree. Ces blocs

sont des liexa~dres curvilignes isoinorphes au cube uiait6 [0,11 x [0,1] x 0O,11: ils sont caractjris~s par 8
sommets, 12 arktes et, 6 faces curvilignes. Onl suppose que cette partition euitre les btlocs est de type
"El~mnents l'inis", c'e-t A dire tqne:
I) l'intersection de ticux blocs dans uine telle Partition ne pent h're coiistituke que (Inn soinniet, on (I'ne

arete complete onl d 'lne face compke.
2) delix soinnms relies par til arete ne peuv'eit. dkfinir qne cette arHte ct (ptiat ic aretes couistitualit les

c~ts d 'nne faice tie penveit. d~liiir (pie cette face.
Hulsietirs caracte'rist iles (lti inaillage peuveuit tre d~duites (IC cC (-Ioix de Iimi itioni: lt articulier Ia

topologie gf~i~rale (111 niaillage est entiremeiit connne dtes lors que I'on se (loni It, iiottibre de blocs et, pokir
cliaque bloc, ses 8 solii ets. 11 est en elfet, possible d~e coniiai tre:

- Ie nomnbre de blocs (donii6), de faces, d'arktes, de sonmnets;
- pour cliacin (les blocs: ses 8 soiets (donnks), ses 12 artes, ses 6 faces;
- pour cliacurie des faces: ses 4 soililets on coins, st's 4 ar~tes on c6luAs;
- pour cliactine des aree: ses 2 soinnmets on extr~imit,s.
11 est alors possible (Ie numeroter ces entitks. Reciproquint, ayant obtenn cette topologie, il est

possible de' dire si 8 (respecti venient 1, 2) soinmets doinnks duMiiissent un bloc (iesp. tile face, uric ar~te) et
le cas Jvlibait d~e de'terinciir IetjIuel (resp. laquelle). 1I est alors iiit~ressaiit tde tiler parti (Ie cts proIprices et
eni particulier dlt fait Itue totes les eiitts - bloc, face, ark'te (0t. plus loill sotis-doinaiiue) - pcnveiit etre
dIcsigiitt's de iiiaiiiere 11iliVoque par- les 8, 1, 2 (et, plus loiii IMI x .INI x 1KN) sonilies qui les teliiiisseiit

IDails cliacnii de ct's5 blocs blexa(:driques, onl lpcut alors olitellir uni maillage sti ructure' "i. j, V' par (les
techiiiques varles. Oii parlerin alors (Ie blocs de iiiaillage U2 rnai' Les eeiieiiis liiiis serooi deiiotes par Q. I
f'4ttoiis qntimie tces carictirist itfies 41c ces hlocs (IC liiillages est ]I n~icur dles iloilires dIe ioeiids sur es :

familles de 1 arcies t)oppos(es.

Regroupement des blocs de maillage en sous-dornaines
L~a partitionr de( tcy'jt "' l'llvwit- IIuis lhectril Wi lcritv poor l. " blus dc 1iu:1illngt's ("~Iultieii

('toltraigialaui ell le Ic iimit
t

i de blocs atigirlie1 ti's rpidit'liilt :I%(.t Ilk t((lipdteZitt(Ii It[ d nailte. 1I pt'nt tic

etre (JI(il de ~iiit cv, blocs vii souis -tloililut' 1f sir1 le-siuiels to- calciuls tdtv'ioit lueeIc~n. \Ii
Wa.ssuiitr Ili iiieiie siiulI tilt- 0i j, k ) ;I ((5 iuu~-louau t I tst liies~itlre (Iiet tu'nr alISNI Cc letgrotlpeileit

(if ilaii-rc sI iiictiirec, 'sl I a II (hit . conisidtlt-et. 11 ti ll i-dl iciii colli lo III:(t ci-llilillieil tdarks Its 3
,hrt'clio d015e (IN'!- I) x (.JNI. I) x (I\Nl - I) bloct Iustliich tIiatfu bloc poll\ mtit I(' d tliii ptar exeitple
pal. ,vs 8 solii iits~

I S, ~ , I ,i I j j, A I. k. k po joIn I, I-I I.INI- I .k I . KNM-I1.

Lets souis-dliaiit' soiul flotic Igllltllte' (h t;t',rt ti1 mtiittutl'tu11 6j "stqtt'--hcs' (unionls "'I. YJ" (1es facts
,W~liviplairf-s). 12 "sqe avl~'(tto~ Ia~q bttu ~ I tiX 'outitels 1.t Imttl l (li11t doiuaiiie 11 ell
-A)gm-otllallivt' det caleill is abuts dlet-Ill tiuuut ll
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Differentes partitions du domairke
Les quat~re niiveaix dei jualllag( (W , 1 i'aip Q ijk) se rtepartisseit. .uiisi:

*Partition de type "Ek~ients F'inis" du doinaine en blocs de mnaillage: n Uyp . fmi

*Partition arbitraire du dornaitie enl sous-(lomaines de calcul: Q Uab "cl

*Regroupenient. " 1, .1, Koo des blocs ejit sous-domnaiiies de calcul: 0,, 1J mi

*Maillage "i, j, VC des sous-doinaines et des blocs: frnail Uij Qi et 2c = -_ Uij 2o

Notion de famille d'ar~tes
Les deux caractoeristiques lprincitpales du mnaillage sont d'une part la structure "i, j, V" des blocs et

d'autre part. In, correspondance des iiocuds de inaillage sur les interface, ciltre les blocs. Elles I)Crmet.tent de
d~gager la notion de famille (Iaretvs en reinarquant tout d'abord quei si deux ar~tes sont enl vis A vis sur
une nihne face, elke out nices-airieiint le meine noinbre de nocuds, puis (ItI cette propiite se transmet de
face enl face dais les dilffereiits bilocs (In maillaige. Onil ira dlone iue dei'x aretes apparticinnent ii une iiiIiie
famnille S'il exist e till( fa ce tele Ic tie ces (leux aretes soiit opposees stir cette face, oii s'il existe tine suite de
faces perinettait dIe proclic ent proelle de relici- ces deux aretCes par des ari-tes dle In luile fainille.

Cetlle notion J)'iliit. de I ransinettre d'aiitrcs iinformnations utue le noifllre dei iioeiids enT particulier Ia

repartition des rioctids Sur les arktcs (i(ne rnheme famnille. Cette propr0t. scra utilis& lors de )a

conlstrulction a I gel) r i du( in a iilage.

CONSTRUCTION DU MAILLAGE MULTIDOMAINE

Construction de Is, topologie et prise en compte de la giom~trie
lIne questioin 'liii app1ara it iindiateiieiit aJpres cette dlescriptlion topologique est 1Ia const ructionl

pral ique de In topologie et, plus pr6Cis 1ieir n.I donnoe des huit sonimets deC char uin ules blocs et, pour
rhaqiie solue-dolnailie'. la 'Ionnile des blocs les const ituant. Ilemarquons tout (Iabord quo la structure

tWpOlogiqJUe lI-(r(c ikIIIIeIIl (Icrte est totalement iiidipendante (IC Ia, g~onirie du (Ioliaiile daiis lequel on
desire construire Ie ma~illinge: enl effet., par exeinple enl 2 dimensions, l'union de trois blocs peut &tre utilis~e
pour des configurations alissi vairi~es qni'uin inaillage en If dans un canial inter-auhe onl quun maillage en C
an tour (I'uii profi I isok' (fig.1I). Iniverseinit, un doinai peut itre iiiaillk selon ules topologies dilrren tes
(cf. icr exeniple) onl encore, uil iiiine iiaillage inultidomaine peut t re ronstrI-ilt en ut ilisant des
dtcoupages dilfirerits (lig.2) Ce dkcoupage du domaine est facile en deux dimensions car il est, possible de
tracer le dIoinaiiie, h-s dilffeents blocs vt les sous-domnaines et plusienrs topologies petiveilt facileient &t.re
dofiniiies et, (es ;inceis poulr till( iionligiiration complexes. Cette opoiration (IC conrepitionl et, (ie repreitatioii
de volumes geoixetriqutiv romiplexes (lienit tr~s iilicile enl trois dimeinsionls 4-1. ii('scje l'uti1lisat ion d'un
otil interactif do. viiiisimllaion tridiinsioniuelle. Clic pent eii particulier *ti illu logiciel de MAO
fonrtioniiait sin- ii slat mu de travail. Lut ilisation d'uii tel logiciel rcvi~t encore plus d'iiitjrt quand oil

renlarqlie (tie los geoiitrlies iiodi'ries complj)exes soul., soit issues dIe Li (AO, -oit liv rout et r( traitees par
In, CAG apr~'s avowi (:(, ilteiiiiius lpar le ralcul. Ainsi les glioiries soninises I I'iiigtiiieir-nunuuicien lui
soit, (Ioiiilees Solis foriiio. doi ficiers (!A() el c'est tiil ficluier de cc type (jIii iloit Servir dle p)oint ie depart
pour In, gelierat ion i III millage. I'iiialcinouit, iiotoils (pie daius les logicicls dle C'A A) ilod en'it's, de iiouiibrtux
ml es(ii0 1)1:1 f;iit I 'ohjetl dv dhviloppeciiii. poluss(- ut peiivoit 4'trv direclemnci. iitiliss lois de Ia.
coristriictioii dii mmiilage: uiilVisafion Hi C'oniepIt ion goiilelriqle il volii iilli, interptolaltion et
Jparainetrislt iou . iiaimpiluhl loll Mt interfSectioul le sulraces...

ILe codte qiiil ai piiiik dotiilir Ii's r(:iult.;its linrseif js loin1 1ii 1111116 IiS pas~f 'ieIS h1'0s- di~it 'ii tel
loguiol; il perit -ot1)"ndantili'tuiir i lopologliv inuiltidotmine telle qiu'elle a ut (( dkrite vt dv coiistruire
til i m:illage A ai de Ic illages; pnitilel de siirf~icis it d arotes. Leos (Ioiiii'i" gtsiuiietriijuvs conistent
iunuiufeet (it iin-' f;ics (rospect iviieit nr~tl('S) ilouii~is sotis fiorimie de grilles de ino X jli points
(resp. suit is lie i oniuirils) Amis li-s dniurlvce "iO'5 IiS itiie c-oriifgiat inn simipliNi6u ('oust i li (luin deuni
cuisvirible fIusvl;Igv-oiIHq- (1;1ii, tiii 14liiSpi-re soull, it-1 ij(ciit~os siir hi Iigiii'c 5: lls-oii. (-oiistjtl~es le 3
grilles dliriissaiii Ic t'ii-vi-g li-i i-n1 pmicitiilii'r luumiplaiulire de lanile), W'iiii suitt de' poiits diolinissant

Ces 'Iollu'' giiint I Ii'lio- ilmpo0(:i pa Ila h (!At) ii sowl cit goiicral las mill iaiii' I vs iiioi oistruiit' Ie
maillage: los blocs, ;itii dI'ii- maillis,, loivewi iire il'liiiis par Iciurs six flaceS qum i- u-ntjtrc.e Soil inipostet
a priori par In ( A( . o-il ifli ue' ;III dIouiu:luuuet u- u i'c'saruie dviiuiiiuie. I)v miut' il pout Flre
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nicessai re d e con st. ruirv certaines a ri' ts oil i- Iel in ir cer a ins son iiels in ten irs all doini anc oil su r la
surface externe de celtii-ci. Notts desiroiis (jalls title Jprelllirv 6tape colistruire algelbri ic iel1t, rapideineiit et
aussi interactivelrlent que possible un prernier iiiaillage. Nous avons choisi de construire un niaillage en
agissant le plIus possible stir le 'squelette inultidorniane de celui-ci lors de la construction des somnmets et
des arktes des diff~rents blocs: ainsi, uin d~placemneiit des sornmnets, ou un changenien. de ]a fornie d'une
ar~te pernietteiit de lliodleler les blocs et. procurent till premier inoyeii souple de controler la qualit6 du
maillage. Ceci petit &tre r~alisi5 en autorisanit, Ics tjuelcques mianipulations siinples- elivisagees:

*cr~ation d'un soininet,
*cr~ation d'une ar~ite par la douiiie de deux soninets et (de deux tangentes ou d'un point iiiterrniiaire,

e d~placement d'un soinet.,
* modification de Ia forine (l'une ar~te.

Ainsi ii est possible, coinine en deux dimnensiors, de construire la tojologie en inodelant les domaines tout
en tenant conilpie (Ie Ia gteornitriv itnlposJV. (Des procedures deviennieuit trks ut iles (11.5 lors (ii el les I)Cuvcil

tre tnisc ein oeuvre jiteractjveiiieni( et. grap)Iiquellielt.

Maillage algeibriqlue
Disposa n ai nsi (1 'tn squel ci Ie n It i (bill ainle, i I reste i p lacer les ti octidis stir les (Ii Irei Ites ent it Cs

(arites, faces et blocs). IPappeloiis (lilt Ic iioiire (IC iroctis est (leterilline &~s lors qn 'ii est4 iix stir uri
repr~sentant de cliaquic farnille d'autes. Tout comiiie l'jtape precedente de ddinition du squleette, lioUs

choisissons de porter lessentiel de ['effort sur la rlpartitioii des noends sur les ar~tes dorit iious coninaissons
icc stade la geomeric: les inaillages bF- e. tridiinensioriels seront ensuite obtenius par interpolatrionl

l'intlrieur des entit~s A partir des valetirs aux bords, avec respect 6ventuel d'une gtoni~rie.
Les repartitions lini~iques Ipcuvent. tout (Iabord k'tre d6Iinies de iiiani~re absolue, sarns faire r~f~reicea

aucune aut.re repartition; (bns CC cas onl potirra imnposer le rapport des deux nilles; extr~ins, Ia rtepartitioni
sera alors gt~ointitriquc. onl onl pourra inilposer Ia longuetir deC Ia, Ireiriije et (ou) dv la dcriilre inlaille, Ia
repartition sera alors cubique (oui dIe degr6 infrieur). Notons que cettle (Icriiru inialiere de dtflrfir la
repartition doit etre tit.ilis&e avec lpreaution car Ie r~.sultat dUpend forleinent (du nimnbrc de Inilles stir
l'ar~te: pour un pacajnitrage de 0 h 1, uric premiere inilfle de 1/10 rnce cr~e aver 5 niailles uni raffirienient
au voisuiage (it 0, tandi. (is c It- rafiiet se troulve ali voisiliage (de I avec 20 inai lies. II est prefer-able de
d~finir des raffineirnent~s relatifs qui Iperniettroit, par siilI chiangeient dlu nomnbre de nocuids sur chaque
famnille, d'obteiiir tin inaillage di. ii~rre aspect avec In deuisit de points voulne.

Les repartitions peiivei. anssi cire (Wiliies CnII r&6reuice A une atitre ar~te; deux cas sont
particuli~rernent intercssanits it i mpliquent Ie transfurt thin1 certain type d'iiiforrnat ion (Jule arci e a une
antre. Ayant diterlinint- une iepartrit ion sur uiie aretc par un nioyeui quelcotique, il est souvenit utile de
prescrire sur I'aritce opposee (]'tileC face Ie nihe repartitioll i uuie liotnothiei pre.s (ini'nie r~p..rtitiori en
abscisse r~diite) et ini sItrans ftenr (cetl t.C :rVi tiu Ohsi r W all Ire faces; I es ark es en quiestion I a ppa rtiennn l ii l .
Ia m~me fanille par (Iclinjiiol et ont1 done Ie' li rne lollinre die iiocrns: Ia conist ruction d]iti nillage stir ces
aretes ne posera donec pais de d ilficii 6t et. Poulrra anlsi ell Cliv is: par tnreri de repartition sur tilet
fainille d'arki.e. (it awtre ilioyeti de' d(Iiiir title repaitit ion est obt liii (!it reliarqiiait qu: 'iiterface elitre
deux blocs adjacents, i1 est. souvit.iit icessaire d 'imiposer des tailles (Ie ijnailles voisincs; lors de la
construction du ti l lage du sqIni~eli ICl cdi icSsit,c ell pa rticnlier qrie les Iongtieii rs dle mrail les dIe part et
d'autre d'un soininet. soiuit voisines. (Dela lotirnit lilt' alut in loyel die ddiiir ntle relrartit iol (de type
cubiquc ou de degr iliiclietin) par1 I iaisf'rt. Wi'nie iiiforiitioii (iine taille d~e iwinille) d'iitic atrt~e A tinle autre
i travers un sollili'.

Exemnples d'illustration
(Des tliffereuits types deI cojist rilO loll I~0l1l Ia topologiv, IV S(Illuele I illtidolnia Il ne v Iv Illaillage du

squclette son(1 ell co, de 'Ic nse in oetlvre,; ces et apes notiq lotlrnssewi trois Iliveatix de colntl~le lors dIV Ia
construction (11 nIiaillage [CS, iesii11ls itpIr'S4.'lils old1 (eeini(' ~llt( bte OItits avec lIn iiie.Iodv In. plus simrple
qui consiste -,I cowl1isi riie etre dvllS soliinets, ti10' n'Imlit i Olitiiforiii e Ii oiits. Nowls rapilelolsttisq'i est.
illiportanlt die rolicevoir lilit cl, (lilt I)Ili-i cotistlin'iiq Ie iiiaillaige A 11,art61 (IV dolilll(:s (IV t1rois types
iiidipendlais - ge~ollhlt li. l-ojologie . rtiiirtili oil lin6eitie - tlt iiani-l- A pl0ivir nivisagel satis 111)1) (IC

L~e prelniel ('xvinltlI illiist re cIi aispiict (III IilOI)Iililt'. II S'agii du colstinlr,' lilt iiaillagu atilotir d'tlne
nacelle similik4- IS ax-yilu ijl ll s tiq ill V1.4t iyll t' tbilt iti par' Iotii 1)11 iIn prolil NA( \()I2 atitog i 'lli
axe, et dont le siailliiget. i tin(,t (oIlIce, I'Iuisii'iiis topoliogics sonl uivisagees 0i les tnillages
corrc~poncdaiils siowi ticits piar 'silipli' Cliauige'iuieitl(,11 tlihi v (~iIf- topolo~tgic Oii stijxxw W iie part. qute
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V'on d~sire obtenir un tttatllage ell I I dais Ce. plain itttrtiett (Iig.3). l)atit-re Jhalt, (,it ~c qutt coatterue les
plans rad iaux , ott contsi lre thi ltrei s contiit aisoits de topologie p)our l'i ati etar et 1.I'cx t~ricuar de In
nacelle: maillage ena 11 ou ena 0. Nous unontrotas sur Ia figure 4 les miaillages stir certaittes faces die sous-
doxnaines obtenus pour les topologies suivatates:

* Topologie I le sous-doajae ittrieur est anill e-t If et les deux sous-dontaines ext~rieurs sont inaill~s
en 0 (fig.4a),

* Topologie 2 :le sous-dontaire iutareur est artailk6 en 0 cc les leutx sous-dornaines ext~rieurs sont inaliks
en H (fig.4b).

Le second exenple inontre commentctt ii est possible d'obteaair tina maaillage autour cl'une configuration
simplifie (fuselage + voilure) (Funt denti avioa de traas-port. La. g~onitrie peut ktre (Jefiae conatne suit
(fig.5):

" le plan de syrn~trie de l'aviort est le plana xOz,
" Ia direction du fuselage suit l'axe Ox,
" l'aile est au voisinage du p~lant xOy et est daliaie par sota empalture sur le fuiselage d'utae part, et par

son profil d'extriniit6 (]Ypaisseur taulle.
9 Ia fronti~re dui dotnaite (lone par des aretes cotastratites stin l'laettisiphtre exUticur.

On a d~fini 40 Iblocs s'appuyattt stir 8 faces ou uions de faces donntees sur Ie fuselage (t(31 ar~tes ou
unaions d'arktes trac~es stir ite sptr.Les blocs5 sott regrotapis ena 3 sotas-dotnaiaes: utt soats-dotaainie en
O autour du fuselage ct des deux autres sous-doaaitacs (extrados et inatradlos) conteat l'aile. Le trac6 des
arktes des 3 sous-domaities (fig.7) lpertaet de v~rifaer Ia bonnae p~rise en cottpte de [a topologie. Les maaillages
de certains couples de faces oppjoses des dilWretats sous-domtaines sot taotatr~s sur les figures 7a, 1) et c.
Gelles-ci periettent de verifier le bont fotactionnemaetat du code, aaaais laissaat, percevoin Ia na~cessit6 de mettre
en oeuv.re les proc~dures plus g6itrales 6voqu~es plIus itaut. pour Ia construction geotaaeri(que des ar~tes et Ia
g~n~ration des maillages sur celies-ci, ou pour l'optirnisatioat de rraillages par des rn~thodes variationnelles
telles celles deicrites dans Ia partie suivatite.

OPTIMISATION ET ADAPTATION VARIATIONNELLE

De nornbreuses mtb~lodes variatioauacles existenat 2, 31 pour- obtenir des aitllages poss~dant les qualit~s
de r~gularit et d 'ortltogona lit4 reconataand~es poutr les calculs a~rodyn arniques. Celles-ci relposent pou r Ia
plupart sur des id~es intuitives vt iatpiriques qui conasistetnt i coitsiclrer le ianillage comne n treillis (de
points relia~s par des ressorts et des bar res de torsionas assuratat Ia r~gularit6 et 1'ortaogotaalit, . B~ien qu'un
modile m~canique soit solas-jacetat $i ces mntlaodes, celles-ci te sont pas entirentent satisfaisantes pour de
noinbreuses raisons (1. Notas rappelons ici les principales caracttnisti(Ites d'uaae ine~tlode variationnelle
divelopp~e pour l'optirnasatioa el, l'adaptatioat de nillages structur( s bi- et triditnensionnels. Un 1nod~le
jn~canique est 16. encore snats-jaceta, ttauis fail. n~fiterce I a tttcattiqut (Its milieuax coati itus par oppositiona
aux inithodes pr6c~deta t~ t'voqtees. 1,31t. ttesatre tde In dMorttatio des atailles lanut, etre (Icitaje et
pet-met dle quatntifier le qualite ]i t taaai lage; ca-tie qiitatii i. est alo)rs 0jptittisce par de~placectant des atoeuds
dans Ie domaine. Lta termte de eotttr6le de volutme apparai t. naturellemttau darts Its fonctionaclies obtettues,
et est utilise, conjoiratemnent avec la-taesune de Ia (It-orttaliota, poat: l'daptatiot d]t anaillage avec contre
de Ia dirormtatioat des tatailles. l'lusi-aas (xeaaajles dv tiaillnges opt(ittists ou adap.s sott presetts et
illustrent les possibilit~s de Ila taiai liilt-.

Une mesure de )a deformation du maillage
Nous considirons I an a ~ od e (ICit taill age Cotii at I d iscr~ti-a'ioa d 'ut it oIblie aCcolttinua q ui coasisitea

trouver une traasfor .aaioa x( () do u u t...it,- de rJfr,tc e (espae, ( t,) at edattt aale
(espace x=(z, y, z)). lPour cvl~a itots raisontlotts (-a cotasiderat In d~forttatioat d'atne minilie 0ktaeatai te
cubique en utte celliale antilIraire A paat ir dIe (;Iai rv axiciamect prop~i0tes 15), i Ies possible (de d&tnoatrer
qu 'une mesure correcte a de In dfornialiota dit culp Is-iai. de nefftettee d its utie ttaille counramiae tie (Vpeiad
que d"s invariagats IV 12'1.111i tetasemr des daformaai iots C a-qsoc~ i '% transformtaniott x(f):

a a ( It 1 2 1

av c
C - Vx'.Vx
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On Iimlpose en ou Ire qute a detpn dv d u sellis I orivieatai ota d e 11 rel lii e; Iv troisii' nit ii ri a it, L, at a i 1 pas
sensible i cette oricn tatioa ii eSt. a lois it vssa ire do. Ive rvii pl acer d a s I 'e xprcssio de1 ai paro:

J - det Vx
Ainsi, on a:

' - or ( I1 , 1 2 1 J

La deuxilime ~lcape consiste A s'assurer que Ia initinimisatiolt de la fotictiontielle a est, un probkme bien
posoe. Ceci conduit A poser des Iiypot~ti'ses stir a et, sur ses (icriv6-s jprettiih-es et. scondes pour des
transformations dites rigides qui comservett Ia fo-itie de la celluic. Ces tranisformiations v~rifient les quatre
propritts tquivalentes suivantes:

i ) x(f) est utie transformation rigide ii) Vx est une niatrice orthogonale directe

iii) C =Id et J =I iv)( 1 11 2 .-I ) =( 3, 3,I )

Pour ces transformtationts, ii rt'y a pas dtiforiuim~oti de Ia cellule a est, stitionitaire. Nous supposons d'aut~re
part que la fonctionnelle est cotivexe all voisittage des tranisformiationis rigides: ces coniciofs assurenit les
bonties propri&ts itiath~inatiques aul jroi)Ietne et. la certitude quc les algorithities usuels de minimisation
convergeron t elfi cacemnt, itvers une solu ii Lim41 illeI. 11 est. a lors possibl d) 1Cen crace risir Ia, fon ctiotin ell e et
d'exhiber des fotictions siniples_- (polytietuiales) dIo'S itnvarianits 1541.

9 En 2 dimensions, on cotisidre la foictioii:

a 2d =C( 11 -2 J ) AK( J 1)2

Cette expression fait apparaitre dcnix terines jprkcedes de cotistatites positives. Le second tetne, ( j- )2,
peuL tre interprlit, cointe un teritic de peinalit, inlerdisatit anl voln v V die la, maille de s'~oigner d'une
valeur prescrite de rJ'frctce V,, ( J -V/V 1z~ ), et. (lone Jproi',i t le (lVversviettW des mnailIes. Le premier
Lerine, ( it - 2 J ), pent qnant, A liii etre imterpre~te cotlmie tie fortinlhi m oiiidtces carr~s" des relations
de Canicly-Rietnanni qui assureit, Ia (onforil (]~it tiail lage:

Zc- y,, = 0 et xr) + t = 01

Cette fonctionnelle pent. anssi t ic n tilis&e pouIir I optilitisatioti de iia illa gcs sur des sourfa ces gauclies 161

9 En 3 dlimensions, oti comtsidirc la, foietioti:

c 3d = ( II1  1 2 - 6 J) j.lK ( j-_1) 2

Cette expression pent etre int(rprvet4 ('om vtitle1 forrit lafioti de4 typ Jit' 114)1 m cSares" d~e- propriekk~ (i-I'v).
Enl efl'et, celles-ci son, cipiivalcniv- tsia

v ) F -~ (hi F elI doti F - I

ce qul conidnit, directeiiewi. AI' iiitt'r(tatill atitiOtICe4' (.11 t4'ti~lIqiiii (It'.

1F -Cof F 112 7 11 1 2 bi

Outre l'ititet'pr~tatioin pi~r(iemmtti'i domiete pour ( J -I)2, o llt 'i (1114, (.( t(.,1 C o14 oIIjI tce I preilier cii
inposant, qut' F soit un' iatiee orthlogoriale dircele ((d(, F -- I)

des cellnjles. par rapport anI carte oil au lt b III)4 itit: Il paai t e l livi mlelcl s~lr dIe pli~volr limposer

des rallititnents (Jais ei'tanim-s regiolis du tlomitnt(, ott phiits g4'tlftta1'tiltt dvt eotistilrt'n ult' foil(. tion ie]le A
I'elielle du dounalic. (Cla ezSt. Cect. eni I)ttltllltttI4' ,11ct.tllt Iliii ralllI'iCl4,dl (1v cotes a , b cL c
(Slit. O0<('O , <1 b,0( ). o6 ces c41lfcivi4lls 4I)CtIlvilt dct Ia tiille m' 4In-t'iio etre chlsis par
l'titilistacctr. Pour chimtt attailit' oil 0611teit ii 4'st (loll(- pos~iitlv dvt iltiitir ot 44)1 tilutioti elieaititaire c7,

Inestiran. -,a tlformtat iou: cle-4i 5'exIrittil' mm 1)ttit' h ftttioll do." tcoo (lol4I4)iti:vS dets Ili4)'Its de le0leiit.
P'ar sommtiotnl~tt dIe (('s cowatlilmi onts. oiilu nu~t tlitte 41404111 l(( gioiit !. ttstitatit. Inv 4jttlit~de

dioratm (IImilag *l miie si. n14)r' 4)111'flt par titittlsnnoi de)1 c! , focitn41 (](-., coorIoltiics des
noetds de I'enseiil4 du tIaillage.

Wi)' point de' Vote' 1tlh1itIllit. I.a foilv ioutll Ie s't'xpiiie (Iit lo-itti4' 41 t's co)41rdomicts dIes tioehuds du
niliage coiie de-, I)olyiiit'5 (de dv4gt4 2N (N lesigaati a iilliltsioll tie' I -spact'). 144)ttt Ia Iliiiitoti,
on titilise it algorilIuime de gtrolieaill e.olijltgt4( Idatis leitel I (p It' diei4't v t Ia rechierchte
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unidjnlensiolzelle dIimi Iininill conuitj i I'iiilibii oi d'ini polynine dev degrJ 2N- I 11 a bien ii 
verifie que la propriety de cojivexilI5 mt. iicesaire 'I Iiiiilicioi iI'in raclile reevllv pour ce polynin et donc
au bon d~roulemnit de I 'algorlihie.

Adaptation du maillage
Les fonctionnelics inises en 6vidence en 2 et :3 dlimensionls o111 en coininin dev nijie ,ippara it retin terne

de contr6le de volme de la inailic:

a Vo I ( J - )2

11 parai t in tiressan 1. d n ii ser cc 1 crune pour adapter le inaillage i nn pliinoinhic'ph 'ysique tniC'cstr i
dire pour raffiner on ;ippauvrir le niailhage daiis certaines rlgions. Ccci p~ent. eli-v fadl apr le calcul d'uiie

souinobtenue daiis nn nailiage initial, ou it,6ativeuiint, an cours du processns de calcil dIV la solution.
L'adaptation consist,( (lone ~i d~placer les noeuds en les resserralit dains certaiincs rIgioiis. Ccla est effectu6
par in imnisation des foil ti on nell vs iiitri'Oliites o6 I 'on a re iii p I a,, par 0

a ;iavec

1)ans cette expressioln, wj vat ii poids (lii pent. eli-v calcuV vin foiiv oil d'esitI~ioils :i posteliori d'erren-r
afin de ininilnisvir celle-ci (ails le (loriaine. Si oil lie dispose pas de vIles est iliio 11. Iv coefi'cienit (w pent
ktre obtenu coinne lnie fonction d'une qualititli pbysique ou (dC son gradient., par exeinle la pressioli, le
nombre de Macli on i'eitropie. C'cst cecte derih-c applroclie qni a i. testice ut (1011 lions iontrons les
r~sultats (lals le paragraplie suivalit.

Afin de gararltir les bonnes jpropriftes in~triques du niaillage, et coiltr6ler la (leforlilaitiou des cellules an
cours de I'adoptaiion, il est nikessnire de faire illterveilir le poids (Jails le premiier tcrmil (des foiictioiinelles,
et de faire nn clioix appropriI5 pour la cellule de ri~f~ence. Coiusid~roiis Lihe cellnile (lais le inaillage initial;
cette cellule pent, irv ipproch6c par un parallelpipede de c~t.6s a b, elr . Lai ccIltile dev rd.1 6ence
recherchee a iii volumle egal i ab ,O nlais ii fant reliartir le poi(Is w eitre Ics I mis cote6s. Cela esi fi~t eni
faisant intervenir ves cosinus directeur-, np , vt 11, du gradIient. de I (umiI( ph IIysi(lt, cilcnut~s par
rapport an I ri~dre forum! par les v'ecteurs a, b "I c; Ia celinic de r~ffterce clinisie emt uil parimlpipede de
cotes:

2 2 2

awi b bW 2 et Cw,

Quand, par exeinple, le gradient, est parallele an c6i j a (Yi =I, .~O ('I miis ('1110 dirction qiie les
plus grandes va)ria-tions (IlI chlanip phiysiqune out. lieu: par Iv Illo~e di ucrit , 1'a(h;ljif:1iou aI done tendance i
rafliner dans cette (Jirectioli. Le poids clloisi w s' crit 181:

(I _ IV. 12) IV I'

oilIV71I (lesigne Ih vllill. lalinive 'lwtre 0) et I (III gradii ' (I m W ph11 'ial il v~isiqilI chiic, , i et, W1 s0111
deux colisi antes: 11111 esI choisiv pom r lafiller (Ins IV., regin.l de foi gri-nivill Gw1  I iitre em,. ajllstce

fw,(x ) d x =f d x

Resultats
lDans cette sectioni, 111)11 lresvll(oils dies iiiailligi.s qui oill 4:iV obleIII a lilis;l.11llO(Id l-l(Cdeiillileit,

d~crite. N
5

ous illiltIi10115s toult ilalloli uiitaiiii's ri'fi'rvncv.,i5 l-81 (hn11 ICS(IiciIvInS robusI~lleC55 de la
rii'tliode etait illiistri'i pour Iv a~ bi(Iineiviion, ei-, wirt i~liiili a all alst ilulir i11 liaillage
orthogonal i pail ir dlijji iliitialislaiioi to)11 ii Nit, ;iilraiii, (ijilii;llk;li ion ;ihlirvll); in 3 dlimiiensions, la

in imic j)roilr ie ;I it '~ oblse rv po lt~ItIa fi, cii lIlf '7
La figure! 2n repr#j,r0'nte. iii doniin mauir (1,11iC alsb lie iiriiiw' La ilopologii -'i di v Il-C car e

pr~sente deux sous-loiiaiis :iii soils-(loiaine en C nutour dIII prolil 0. u11 souis-doniaiiic en 11 en amont..
Le ionaillage Ipiesvl'uf it (4f. ohteimi par iiiisaicioii de In 11)11(1ioiiiiiIi ai,,, S('Imi-emiiil (Jils% cliacni des
sOius-(Ioiaiiies. Celte iniiusatini permlet, dmis uii Inciuiiir fevips, 'ii lissaiii Iis liloui(k Iiioliiles Stir cs
col.~s des- sous-doiaiuiis. de conisiiiire icux faiiiIe on liogoie.: ct's fmiiillo's ,oulil( iii tilsc coinmnIe
systiiue de Iparamlelxrisal.iioii il oinineiaii vi permlitit.l pmar iiileiiiulalii lllie iioisiriiile 1(-, ligiocs de' maillage
pitaialt, piar Ii's pillllS vtoiulus SIlrl Iis froud lvii's. 01'eli- iileri-huli oll alIiiiiiiev pvuiivl lassuiier
I'oitdogouialitfv ,Iljx froliii ivn' de' cliacini dies soiis-tlomnies. it1 en pall iculii'i I;i (1)11 iliiidi' pciae aux
l'nterfaces.

La uiuel.odue W(IhIi~iioil a) 4:10 liiiilimi'r ell i1iiil (161iH Iiloi, immsion.jii ;71 ii ;% peiliis imiieliorcr
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sesib~lleineit Ia qual ite de sol ii olis, ( 'coun leen t out(les par rIsolottioli des ujiiuatioris d 'lEn ir pour
diverses configurationis: l'adaptatioii periliet WIattviritire avec ui inaillage inoycii ada ptei title pretcision qui
aurait n~cessitV un mnaillage finl non adapt . Nous pr~sciitoris icit ini exeiple qui a .t traitt6 dans le cadre
de la simulation iuii:rique d'un essai en soufflerie, portant sur I'ctudle du p~ilotage en force du mnissile
ASTER A tr~s hiaute altitude ['11. L'interaction d'un jet lat~raI et d'un ecouleinent supersonique externe
cr~e, en amnont de la sortie du jet, un clioc d~tacli , p~rinicipal point. (Iilitrk. de cetle siimulation avec sa
r~flexion sur la paroi de la souflerie.

Un inaiflage initial est construit plan par plan avec les coniventionis suivantecs:
- plan amont :k=l et plan aval :k=85.
- surface du inissile j=1 et. paroi de la soufflerie :j=,19.
- plan de syrn~trie i=1 et i =82 (dont le plan dIu jet :i=I).

La densit6 a 6t retenue coinine paramnetre d'adaptation, la r~soliition des equatiolis d'Eulcr a t
effectu~e avec le code FI.U3C II A I'Arospatialc. l~a Figuire 8 relpreseiite III topologice e Iciinillage dans tin
plan perpendiculaire ,i I 'axe du inissi Ic (plant k I ) ainrsi que les ligries i.so-dunisite6 (lals Ic plani du jet (plan
i=1).

le inaillage a etcJ optiriis6 et. aI Jt Wilis6 pour calculer tin( nouivelle solut ion (Fig.l). l,'exaineii de
celle-ci [81 a ioorir (ue l'adaptaiori perillet (Ie (lecrirle I pied dii eliot aver pills de tuiteisioji Ci, enl
particulier laisse apparai tre une discoiit'inuilde Conttact non (Iecclei stir le irtaillage initiud I'aidaltation du
maillage a e6galerruert pernfls de inieux predire ]a r~flexiomi du clioc sur la paroi de la soufflerie.

CONCLUSION

Uric m~tfhode pour la const ruction, l'optiniisation et l'adaptation de inaillages structur~s
tridimiensionnels a etc presenitto. (elle-ci se caracterise pa uric preiere etape purinit algOebnque qii
nlckessite des inoyciis (it calcid penl pukiSsattS, deCS poSSiluiltres gragliiques iImh'ortaiJte('S Ot uric forte inter-
action deC I'ing~nietir; cette Ftape perliiet de colistinire, raidenciieit. et. inteiactiveiienil, liii preiiier inaillage
qui peut vcntuellenient supporter kil calcul aerod *Yiiaiiique. L~a secoride etape vaial ioniielle riccessite des
nioyeiis de calcul iiiipuit~a[it's suitolit enI 1elitlis de calcul , elii est pat colttr iioa se et lie demuauioe pa's
d'intervention dIe I'inrg~nicur. L~a iiaillage obtenu Ai III slitre de cette d ape luerniet dle calculer des 5olutions
d'excellentes qualit~s.

Ces deux 6tapes sont encore decotipVcs et ti ri iiporatit travaId rest e i faire amn d'obtellir tin outil
g~ri~ral. Certains aspects niont, datutre part pa~s (:t6 voqtiis daris Col. article inis font l'objet
d'approfondissenient et de reclierelie: interface CAO-naillage, d~finitioii et traiteirient des surfaces, clioix du
crit, e dadaptatioi.
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a) Plan Me6dirien b) Plan Radial: c) Plan Radial:
Topologie H-0 Topologie 0-H

Figure 3: Topologies pour un Maillage autour d'une Nacelle Creuse

a) Topologie O-H b) Topologie 11-0

Figure 4: Maillages Multidomaines autour d'une Nacelle Creuse

Figure 5: Donnies pour un Maillage Multidomaine
autour d'une Configuration Fuselage-Aile

Figure 8: Representation Filaire du Maillage Multiclomaine:
Arktes des Sous-Domaines



b) Sous-Domaine Extrados

S) O SLs-onainie en 0 c) Sous-Domaine Intrados

Figure 7: Faces des Sous-Doiaifles

A.

C alc i autitor dul MIissile AS'TE!:?:

Figure 9: Maillage Adapt~e
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SUMMARY

In this paper, efforts aimed at bringing a multiblock grid generation system to the state of maturity
necessary for practical use are discussed. Attention is focused upon the interrelated areas of
topology generation and grid control. An algorithm for automatically decomposing a flow domain about
an aircraft configuration into a component-adaptive topology . given. Two techniques for controlling
the resulting grid topology are described. The first automatically produces default grids, which will
generally be of an acceptable quality. The second is a user-friendly interactive grid editor which
allows any deficiencies in Lhe default grids to be rapidly identified and modified. The paper
concludes wiLn examples of the multiblock approach applied to a range of aircraft geometries.

I INTRODUCTION

The analysis of tra-isonic flows about realistic aircraft configurations is of considerable importance
in the design of military and commercial aircraft. The importance of such a flow regime to practical
aircraft design arises from the need to maintain a iigh ae-oynimic efficiency in the .peed regime
whero, compressibility effects becomo substantial. For transport al-craft this is necessary to ensure
efficient high speed cruise, whilst for combat aircraft, it may p'ovide a useful extension .o the
manoeuvre flight envelope.

As the level of sophistication foL mathematically modelling compressible flow has developed, and the
efft'ct.iye c-ust of computing a givei solution has reduced, there has been an increasing demand to
introduce the use of the best currently available flow model into the design environment. To date,
tho solution techniques that have been devised for the higher order equations which govern fluid
motion require the flow domain to be discretised into a set of points known collectively as a grid.
In spite of this, deve-lopments in grid generation have continually lagged well behind progress in flow
algorithm development. The extent of this can be seen by contrasting the maturity of Euler solvers 1 ,

"
with the isolated reports of grids constructed mbout complete, powered aircraft. 3  

If computatinnal
fluid mechanics is to fulfil its potential and become a major tool for use by an aerodynamic ist at
various stages of a proje(t design, then mesh generators need to be brought to a level of maturitv,
whereby it is possible to handle shapes of arbitrary generality with ease. Anything short of this
will i nevitabiv affect the long term application of any approach to modelling flow behaviour.

This paper focuses or. efforts aimed at 'vinging a multiblock grid gin-ration system to the state of
maturity required for proictical use

1
', . 

Existing multiblock methods rely heavily oo user-interaction,
Complete automat on of iuch systems is not feasible since -ach c-onfigurat i(en invariably posspsses
,istirv-t ge,)metri, characteristics neces-.rating individual attent ion. However, to ease the burden

npols e(i on the nr-specialist, a steadN move is being made towards iritroduc-ing automat ion to those
'l, ments for which such ari tpproach is practical. An alg~orithm for automating the construction of
comiponet- adaptive grid tot l giecs aiout a pract ical range (if aerodynam ii gti(imetr i ,s is outl Iied. A
secorl, interf:., ing algorithm whitI drives tle distributi on of points in the bouridaries arnd
sibsrquentI y within the domain is disc.ussed. Sinc,-e a al tealie amo'unt of user-interaction will always
tie ne cessary in the su essful spplijatton of multiblock systems, an interactive surface grid editing
fa, I I it y has been des i grid as an a id t, the non-special ist, Th is graph i a I mehan ism for vi c i tig and
modifying ;. id deficienc'ies is des,-rib-d. The power iif the multiblo,'k techriique, thich is ioupled
with an Euler algorithm, is illustratcd with grids and fliw results f,,r a varety ot complex aircraft
ctf i giUrat ions,

2 _GENERAL PRINrIPLES OF MULTIBLOCK GRID GENERA -TW

Th,' mult ibloul' approach to grid gerteration whit.- i ses the basi [,riept of block stuctured grids
has been well documented.

6 , 7 ,  
Eac-h i'ompor'tit ni a complex airraft 'onfiguration fasours its own

natural type, of grid struti r'-. For .sample, a wing may favour a 'C' grid stru ttr, whilst fir a
fuse lage a polar '0' grid strut ort' may tin' a mort, sui table ch )ce. The phils<iph behind our approach
is t , i ri'rporat, t. most nutural st I n-tiirt.'i tretrund auh ... mrnen t wiIt it a global 'art esian
strict ire. The f low domain i ; d,,onmp.i,;,l i t it a sct of non-o,, rlappni g hlocmks, .ith the consrt aint
that a si nglI -- boutdaor d -rid t ion t vp'e i, a' i q I at i'd I Ith each fati f i'aoh bl ock. Fa'h block maps i(
a cuboili in 'umputnat irial spa''. Theo arranis'm,,rit of lhlo,'ks with r,'p.'ct .o 'aih other iefines the
topihl~gy. ,,r gril giterat iiin putl- os, a rtri hlI,' (fixed) tlurilarye-ondilt i(n is imposed at bilick
fa,'-i whio h liit ,ri thei'., figurt ionl ,,r in thl tart to ,1 1..undarv f ,it il' flo i ttisn. Th oth'r blck
fa " s which li,' within th ,Irit,'rioir 'if th. domain it, giv. a ,o''o itiuity .onldili on. 6rid points on
sli'fl fais will I,,' tri''s' d in the sam,' mtrinuer at, p lrit s ithit l Il- k I- - 'nir, that irild lines pass
smothl y hel w'eti adj a erit hl,-k l,iijidar i's.

A set of no-linear -'lipt ,' partial diffr nCtial ''pial i nsi1 tha -i b in the ilh'as if Th,,mpson, lhamtes
and 4astin

9 ) 
are used t,- g,,ratte grid poinlts within the, fliw dlain. Th.' 'quat iins ari, 'if the form

i j Xei j  p -p V i (1I)

where, gi.) tre the mtrlr terms, pi 'he icnir0 I fur tions, I th- physial i rrid p int (',,,rdiriates, with
th

,
I ensuur nl ,tai ii I , i tak in thl. \-ilii's I , 2 and 3.
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The geometry for each component of the configuration under consideration is defined separately by an
arbitrary set of cross-sections of the component. The Coons bicubic patch technique

10 
is used to

obtain a continuous description of the surface of each component in terms of its own pair of
parametric coordinates (non-dimensionalised surface distances {s,t) along and across the input
cross-sections defining the geometry). The equations for a given bicubic patch are of the form

X = AMBT (2)

where X - (x,y,z), A = (S3 s2 S 1), B = (t
3 

t
2 

t 1) and M is a matrix consisting of parametric
derivatives of X and some blending functions. This continuous description of each surface enables the
intersections between adjacent components to be determined using a Newton-Raphson technique.

Surface grids are generated in terms of the parametric representation of each component usirg the
equivalent two-dimensional form of Eq (1). The two-dimensional topological structure associate.I with
each component surface is derived automatically from the global grid topology. The method of Thomas
and Middlecoff

I
l is employed to control the distribution of grid points on the surfaces. This method

of grid control will be discussed further in subsequent sections. Briefly, grid points are fixed in
position along the Dirichlet boundaries of each grid, the control functions in equation (1) are
determined on the boundaries, and are then interpolated throughout the topological structure of the
grid. Thus, the distribution of points on the boundaries directly influences the positioning of grid
points within the grid domain. The grids computed on the geometry and farfield boundary surfaces are
then mapped back to physical space and used as fixed Dirichlet data for computing the grid point
distribution throughout the flow domain.

3 TOPOLOGY CONSTRUCTION

The ideas upon which multiblock is based allow, for a given configuration, a wide variety of
topological structures to be assembled. In practice, however, grid topology and grid control are
closely related and a poor choice of topology may result in an inferior quality grid. Consequently,
alternative grid topologies can have noticeably different effects on flowfield solutions. Isolating
which is the most suitable topology for a given geometry is not an easy task. Furthermore, the
generation of all of the necessary information for connecting blocks is a tedious job for even the
most experienced method developers. Such an exercise is very time consuming and extremely difficult
to visualise. As a further complication, a minor alteration to the geometry definition may
necessitate major changes to the topology structure.

The information stored within the topology data file controls the grid generation and flow solution
processes, and it is therefore vital that the data be set up efficiently and error free. The ability
to view some or all of the stages followed in the construction of a suitable topology is essential.
To encourage the use of the multiblock technique, it is necessary to steer efforts towards
establishing a user-friendly environment in which the topology information can be readily defined and
the resulting block structure examined. This requirement has led to the development of a topology
generation algorithm

7
,
8 
which has absorbed much of the necessary expertise, leaving the user free from

the responsibility of specifying block connectivity data. Component-adaptive topologies can be
generated quickly (typically five minutes for the examples shown) to ease the search for the most
suitable topology. As the topology generation algorithm decomposes the domain it stores data relating
to the relative locations of the individual components within the topological structure. This
information controls the boundary grid point spacings which would otherwise require considerable user
effort if defined interactively.

3.1 Topology Generation Algorithm

The topology algorithm follows three fundamental steps. Firstly, the domain about a representative
schewatic of the configuration is split up to define a Cartesian 'H' block structure. As discussed
earli(:, this decomposition is bound by the constraint that one boundary condition be applied at each
block face. Secondly, the layers of blocks lying either side of the individual components are split
in two, forming two layers, to enable local grid structures to be embedded around each component.
Finally, new blocks are added to the global Cartesian framework as required to create the appropriate
'C' or '0' structures around each component.

This process is illustrated here in two dimensions (Figure 1). Given an aerofoil AA' within a finite
rectangular domain BCDE (Figure Ia), consider the mapping to a computational domain (Figure lb) with
coordinate system (P,C). The aerofoil profile maps to a horizontal slit AA'. The domain is then
subdivided into a Cartesian topology allowing for a single boundary condition at each side of each
block. For this case the domain decomposes to a minimum of six blocks (Figure Ic). The layers of
blocks lying above and below the aerofoil schematic are split (from H to H' and from G to G') to give
twelve blocks (Figure Id). The addition of two blocks at the leading edge of the slit (at A) produces
an embedded 'C' grid structure (Figure le). By adding two further blocks at the trailing edge (A'),
an '0' grid structure (Figure If) is obtained.

This process transforms readily to a wing, with a Cartesian modelling of the tip, by stacking either
of the structures in Figures le and If in the spanwise direction. Three-dimensional topologies are,
however, more usually defined by combining these structures as appropriate.

3.2 Automatic Topology Generation In Three Dimensions

A truly three-dimensional application of the topology generation algorithm is illustrated using the

wing-fuselage-three pylon-store configuration shown in Figure 2a. A basic schematic representation of
the configuration (Figure 2b) is the only geometric data required. It is used to inform the algorithm
of the relative position of components. The schematic is duf'-. in terms of a computational
coordinate system representing the flow domain (C,n,C). The domain itself is represented by a cube of
dimensions 100 x 1000 x 1000. Each component of the configuration is represented as a rectangular



plane in the schematic. The user is required to define each of these planes by specifying the four
corner points of the plane in computational coordinates. Since each component is finite in size, each
must be defined within the dimensions of the domain. Tn fact, the only boundary of the domain on
which corner points may be defined is the ri 0 boundary which represents the plane of symmetry. The
absolute dimensions of the planes are immaterial. The relative positioning of the schematic planes
signifies the relative physical positions of components. Each component is represented by a plane
which is constant in the most appropriate coordinate. For example, the fuselage is represented by a
plane of constant n whilst a plane of constant 4 corresponds to the wing. Thus, for the components of
the configuration shown in Figure 2a, the following information is specified.

a) Fuselage: plane of constant rk, corners (200,0,200), (800,0,200), (200,0,800) (800,0,800)
b) Wing: plane of constant C, corners (400,0,500), (600,0,500), (400,200,500), (600,200,500)
c) Pylons: planes of constant r, corners (450, np,300), (450,p,500), (550,np,300), (550,rip,500)

with Rp = 50, 100 and 150 to represent the differing spanwise positions
d) Store: plane of constant 4, corners (300,75,300), (300,125,300), (700,75,300), (700,125,300).

The fuselage schematic is defined at r z 0 since it intersects and is symmetric about the plane Y = 0
(ie the plane of symmetry). The schematic plane representing the wing is defined so that it
intersects the fuselage plane. Each of the pylons intersect the wing and this is indicated by
specifying the chordwise C coordinates for each inside the limits of those defined for the wing. The
middle pylon also intersects the store, so its chordwise coordinates must also lie inside the range of
those defined for the store. The nose of the store extends upstream of the wing leading edge and the
rear extends downstream of the wing trailing edge and this i denoted by the relative P coordinates of
the two components.

Armed with the schematic definition of the configuration, the topology generation algorithm can
proceed to construct a component-adaptive topology. A topology consisting of 1246 blocks may be
derived from the information provided for this configuration. The Cartesian framework of the topology
can be examined during the construction process by viewing the projection of the schematic onto planes
constant in one of the computational coordinates (Figures 2c-ei. The topology algorithm has added
layers of blocks either side of each component to allow the '0' and 'C' structures to be embedded
(section 6.1). The computer code incorporating this allows the optional interactive addition and
removal of layers of Cartesian blocks. A limited number of points may be assigned to each block, so
the addition of extra layers allows more points to he added in a given direction if found necessary.
The facility for removing layers of blocks may be used to remove redundant layers, for example, when
an '14' grid structure is to be used instead ,f a 'C' grid structure for which extra layers are
automatically provided (step 2 of the topology generation algorithm). For example, the arrows in
Figure 2c point to two layers of redundant blocks which may be removed from the default Cartesian
structure defined for this configuration to produce a (040 block topology. This configuration is
discussed further in section 6.

4 DISCUSSION ON GRID CONTROL

The method of Thomas and Middlecoffl
1 

is employed to control the distribution of points within the
grid domain. On the assumption that grid lines transverse to the Dirichlet boundaries are locally
orthogonal to the boundary and have zero curvature at the boundary, limiting forms of Eq (1) allow the
control functions pi to be determined based purely on the distrioution of points on the boundary. The
control functions are then interpolated throughout the topological structure of the grid to ensure
that the grid stretching within the grid domain reflects the spacing on the Dirichlet boundaries.

This method is first used to control the generation of grids on the surface of each component.
Surface grid generation reduces to grid generation in two dimensions since the surface of each
component maps to a two-dimensional rectangular domain in the surface parametric coordinate system.
The method due to Thomas and Middlecoff therefore only requires grid points to be predefined on the
rectangular boundary and along the intersection boundaries with other components. A geometry
intersection package provides the necessary strctchings along configuration component intersections.
The other boundaries correspond to intersections with the flowfield boundaries or to the trailing
edges and tips of the component surfaces. When combined, the Dirichlet boundaries on each surface
form a number of distinct closed contours.

The process of distributing points along the Dirichlet boundaries depends upon the topology structure
and knowledge of the relative positions of other components. This would prove to be a laborious job
if undertaken interactively and would require a number of iterative steps before satisfactory grid
quality is achieved. To ease this situation, an algorithm has been developed to position points along
the Dirichlet boundaries of each component whilst being sensitive to the relative positions of other
components. This method forms the basis of the default surface grid generation system.

The topology generation algorithm sets up a list of descriptors which are associated with features of
the geometry and topology and assigns them to particular block edges. This information drives the
grid control algorithm. It traces each Dirichlet contour, and examines any descriptor associated with
a transverse edge. Grid points are then clustered towards the point at which the Dirichlet contour

crosses such an edge. The example illustrated in Figure 3, which utilises the two-dimensional
topology schematic shown in Figure le, indicates how the algorithm is used to control the grid near
the trailing edge of an aerofoil. The boundary at the aerofoil surface will already have a fixed
point distribution defined. The grid control algorithm therefore only needs to examine the outer
Dirichlet contour. Starting at a nominal point downstream of the aerofoil trailing edge, the
algorithm follows the contour in an anticlockwise direction until it meets a transverse edge with an
associated descriptor. In this example, the first transverse edge met with such a descriptor is a
vertical edge above the trailing edge of the aerofoil with the desrriptor WTNGTEX. This descriptor
iuiurms the algorithm to fix a point on the boundary directiy above, and also below, the aerofoil
trailing edge and gathers points either side of them.
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5 INTERACTIVE GRID EDITING FACILITY

The quality of the grids on the surfaces of the configuration and the farfield boundaries have a
direct effect on the properties of the grid within the flow domain. The quality of a grid may be
simplistically assessed by examining the local skewness, smoothness, aspect ratio and stretching of
grid cells. Since the surface grids are used as Dirichlet data for the generation of a global
three-dimensional grid, any such deficiencies exhibited by them will be propagated into the field, and
may have an adverse effect upon the flow solution.

The default grid generation system described above offers a limited number of methods for altering the
distribution of points on the surface grids. The method adopted for controlling surface grids
requires that predefined point distributions or stretchings be fixed on the Dirichlet boundaries as
already discussed. A few of these prespecified boundary stretchings may be modified. For example,
points along the trailing edge of the wing can be repositioned using a cubic or linear point
distribution. Alternatively points lying along the intersection line between two components may be
redistributed by recalculating the intersection line using a Newton-Raphson technique. The only other
means for modifying surface grids is the use of factors by which the strength of the source functions
pi, Eq (1), is multiplied in certain predefined regions. For example, for the surface grid on a
wing-body-foreplane configuration, the :C' grid structures around the leading edges of the
intersections with the wing and foreplane can be controlled by user defined input parameters. The
successful use of this technique is again likely to be an iterative one which can only locally modify
grids whic'L already exhibit the basic qualities desired of a grid.

The methods discussed here have b,:en used with considerable success to generate grids on a variety of
configurations. Experience has nowever shown that these grid control methods have some clearly
identifiable restrictions. The grid point distribution algorithm is insensitive to local changes in
geometry for a given component. For instance, in distributing points along the trailing edge of a
wing, the algorithm makes no attempt to determine whether the wing has a crank in it. Also,
experience has shown that the detailed control of grids which are expected to stretch according to
large variations in length scales of a given domain can be i demanding task. This problem is
exaggerated if components are closely coupled as will be illustrated for a multi-element aerofoil
case. In addition, poor quality grids may be a result of unsuitable topology structures or
insufficient numbers of points in a given direction. Finally, for a grid generation scheme to be
robust it is essential to provide a flexible mechanism for unfolding grids in regions that have
crossed over, and for improving where necessary the qualitative features of a grid.

The issues raised above have motivated the development of an interactive surface grid editing facility
to complement the default grid generation system. The system is run in conjunction with the surface
grid generator. A set of default grids is generated on the surfaces of the z.;,iguiation and the
farfield boundaries and the grid geneiaLor identifies if any regions of a grid have crossed over. The
grids may be examined in detail using available plotting packages so that the quality of each may be
assessed. If the methods provided by the default grid generation system offer no further improvement
to the grids, the interactive facility can then be implemented. The editing facility is a menu
driven program which employs standard graphics software to allow surface grids to be viewed and
modified in a suitable format. The menu provides a selection of options for interactive control of
the /iew and edits.

Surface grids are initially generated in terms of their own parametric coordinate system. Each
component type leg WING, FUSELAGE) to be processed is defined according to the standard parametric
coordinate directions (s,t) with the normal to the surface pointing into the component. For example,
for the wing, the parameter s varies in the chordwise direction starting at the upper surface trailing
edge around to the lower surface trailing edge, whilst t varies along the span of the wing. Although
the surface grids are subsequently mapped to the global coordinate system via the Coons patch
technique, the interactive editor will operate on the parametric description of each grid. The
parametric description provides an advantageous format for viewing and applying modifications to
surface grids due to the comparative ease of plotting two-dimensional grids. The parametric
coordinates for individual grids are output to separate files and the interactive editor will
therefore require access to the grid files only for component grids needing atcrations. The surface
topologies will already have been derived from the global topology. When the parametric surface grid
files and associated topologies are available, the interactive system may then be run.

5.1 Description of Interactive System

The interactive facility starts by prompting for the component name associated with the surface grid
to be edited. The relevant data files are input and the grid is displayed in terms of its own pair of
parametric coordinates.

A typical screen display is shown in Figure 4. A default view with only block edges visible is given.
The example represents the grid on the surface of a fuselage which is intersected by a wing.
Throughout the editing process a variety of colours are used to highlight different topological
features such as Dirichlet boundapy edges, internal continuity edges and new point distributions.
Different line types will be used to illustrate these characteristics in this paper. The blocks are
numbered to provide a means ltur identifying the areas to he operated upon. A main menu of optios is
displayed below the grid. The available functions fall into the following categories:

a) Editing functions (1,2,3,4 and 9)
b) Informative functions (5 and 6)
c) Viewing functions (7 and 8).

Each of these options yields sub-menus and/or sequences of prompts. User input is entered either
directly at the keyboard or with the use of a cross-hair cursor. Responses from the user require
validation and a variety of error messages are available.
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Alternative views of the surface grid may be obtained at any time between edits using the viewing
functions (7 and 8). Tlh cross-hair cursor can Ie used to supply an enlarged view of an area of the
grid, or a view of the grid in physical coordinates (x,y,z from a given viewpoint can be chosen. For

the latter case, the system will require the bicubic description of the surface for transforming from
parametric grid coordinates to the global coordinate system. Ajthough the default view of the grid
only shows block edges, the view can also be changed to include all grid lines.

A number of options are available for gaining information about the grid and its topology (5 and 6).
Function 5 provides a sub-menu of options for highlighting selected features of the grid structure
such as the current distribution of points along block edges. Function 6 lists a sub-menu of options
offering information on the topological structure; for example, a list of the adjacent component grids
can be obtained or the axis system local to a given block identified.

The editing options (1 to 4) provide considerable flexibility for altering the distribution of points
where required. The distribution on the Dirichlet boundaries is used, as discussed previously, Lo
control the distribution within the grid domain. The default distributions may be changed and this in
turn will reflect on the redistribution of grid points within the domain. Internal continuity block
edges can also be modified and fixed in position. This provides a direc means for resolving features
such as grid cross-over. Although sacrificing slope continuity of grid line mpting at such edges,
otherwise incorrectable deficiencies can be sufficiently improved to allow subsequent computations for
the global grid and the flowfield. Finally, option 9 may be used to input edits of types I to 4 via
an input data file.

5.2 Editine ,i-

The editing functions operate upon grid points coinciding with topological characteristics of the grid
such as block edges or block corners. Each surface block conforms to a standard numbering system for
the relative positions of corners and edges (Figure 5). The block edge and corner numbering provides
a mechanism for indicating where changes are to be made. The editing functions can then be applied
either to points at block corners (option 1) or to points distributed along a series of one or more
consecutive edges known collectively as a path (options 2 to 4). To ease the identification of a
block corner to be edited, the corners of any block can be numbered. To identify a series of edges
requiring edits, only the block corners lying at the end points of the string of edges need be given,
together with the number of the block edge lying first along the path. For edges or corners which lie
adjacent to others only one of the coincident edges or corners need be edited since the system will
automatically redistribute the points associated with the others.

As functions 2 to 4 indicate, boundary and internal edges of the grid must be edited separately, since
they are treated differently, As already discussed, internal continuity edges are fixed in position
once edited and thus the boundary condition at such edges becomes Dirichlet. Edges along the
boundaries of the domain may have new sLreLtnings applied but the boundary condition remains
unchanged

Various mechanisms are available for allocating new point positions depending on the editing function
chosen. Block corners can be moved either by specifying the new position in parametric coordinates,
or by using a cursor digitising mechanism to pinpoint where the corner should be relocated on the
grid. Points along a series of edges can be repositioned by choosing one of a selection of analytical
stretchings, by specifying the new coordinates of each point along the path in turn, or by using the
cursor mechanism to pinpoint each point location in turn. The choice of method depends very much on
the problem to be resolved. The changes chosen are indicated on the grid with symbols 'X' and '4'.
They may be accepted or rejected and the process can be repeated.

When all the necessary edits have been made, the edits may be saved, or completely rejected, leaving
the original grid untouched. If edits to the boundary of the grid are saved, then any surface grid
sharing the common boundary within thz global structure must be modified accordingly to ensure that
points on the common boundary match up when the grids are transformed to the physical coordinate
system. The system can usually perform these edits automatically for the appropriate adjacent grids
with the operator only required to confirm that they are acceptable. The operator can then proceed to
edit another grid or exit the system.

When the necessary edits have been made to the set of surface grids, the grids are resubmitted to the
surface grid generation process in their parametric form, as an initial guess for the iterative
solution of the grid generation equations. The point distributions within the domain of each grid are
recomputed based on the updated fixed edge distributions. The resulting grids can be replotted and
their quality reassessed. The edit cycle, composed of edits followed by grid regeneration, may be
repeated as necessary.

5.3 Examples of Editing Process

a) Crank wing-fuselage configuration

The grid control algorithm defines a cubic or linear stretching along the full span of the exposed
wing trailing edge. Input parameters control the strength of a cubic based on surface distances which
is used to gather points towards the wing root and tip. The user is therefore unable to use this
mechanism to position a point accurately at the location of the crank. In addition, this mechanism
offers no facility for clustering points either side of the crank, and is thus unable to model the
discontinuity in sweep at the crank. Figure 6 illustrates changes that can be made using the editing
facility to aier the spanwise distribution along such a wing. Both the parametric and physical views
of the default grid are shown. The labels ABCDEF highlight the correspondence between the parametric
and physical coordinate systems. Examination of the wing geometry definition will give the parametric
location of the crank. To control the spanwise positions of all of the grid lines defined around the
wing in the chordwise direction, it is sufficient to redistribute points along the fixed spanwise



edges. Therefore, points along edges lying along the upper and lower surface trailing edge are
redistributed and since the grid control algorithm also fixes the block edges lying along the leading
edge of the wing, these must also be altered accordingly. Two layers of blocks are defined in the
spanwise direction, and with appropriate numbers of points in each, it is sensible to try and position
the inLerface between the two layers at the crank position. This can he achieved by positioning the
block corners coinciding with noth the interfacing edges and the leading and trailing edges of the
wing at the crank position. The new position of these corners is marked on both views of the grid
with the symbol '<'. Then, by redistributing points either side of the interface in the spanwise
direction, points can be gathered towards the crank as well as the wing root and tip, Again, cubic
distributions can be used to cluster points towards these features. The sub-menu below the grid shows
the possible analytical stretchings which can be applied. Grid points have been redistributed along
the leading edge of the wing and along a section of the lower surface trailing edge. The points
outboard of the crank are about to be modified. The end points of the single edge being edited are
marked with the symbols 'A' and 'V'. Again, a cubic distribution can be used to draw points towards
the crank and the wing tip. Figure 7a highlights the problem at the crank position where the grid
definition has blended the sections either side of the crank. By moving the appropriate block corners
and redistributing points along the leading and trailing edges as illustrated in Figure 6, the grid
more accurately models the crank (Figure 7b). The regenerated grid on the surface of the
configuration is shown in Figure 7c.

b) Multi-element aerofoil configuration

To illustrate the adverse effect which closely-coupled components can have upon a multiblock grid, a
53 biock topology structure was set. up for a wing-flap configuration which was treated as having an
infinite span. This is essentially a two-dimensional test case with sections stacked in the spanwise
direction to provide input to the three-dimensional multiblock Euler code. A number of topology
structures were investigated and the structure shown in Figure 8a proved to be the most suitable. The
wing is represented by the line A'A and the flap by line B'B. The structure allows for the slight
overlap of the components. The minimum of two layers of blocks lying between the components is used
so that. 'C' grid structures may be emoeddeu around each component whilst minimising the number of grid
points lying between the closely-coupled components. An extra layer of blocks is generated below the
configuration to provide Lhe interactive editor vith additional scone for fixing edges within the grid
domain. The default grid based upon this topology (Figure 8b) is very poor in quality with highly
stretched and skewed cells and grid lines pulled away from the surface ui the configuration. The grid
lines around the flap leading edge have crossed over due to the incompatible density of grid lines
between the two components and between each component and the farfield. The grid is unsuitable for
accurate flow calculation. The deficiencies identified within this grid indicate the difficulties
that can be encountered in controlling meshes, about shapes of arbitrary generality, using the minimum
specification of boundary data required for solving elliptic problems. In this example, the
deficiencies are mainly caused by a combination of the inherent smoothing properties of the elliptic
equations and the close-coupling of the elements. Other authors report

1 2 
having to fix the position

of grid points on all block boundaries in order to control the grid about a multi-element geometry.
Here, the graphical editor is used to additionaliy constrain the default grid shown in Figure 8b. By
modifying a number of the farfield boundary distributions and fixing points within the grid domain,
the original deficiencies may be improved (Figure 8c). A. number of the boundary edges have been
edited to draw grid points closer to the configuration and many internal edges have been fixed to
improve the size and shape (if cells, particularly those near the surfaces of the configuration.
Figure 8d shows pressure distributions on the surface of both components and the comparison with the
analytical solution due to Williams

1 3
, indicating that the grid is now reasonable for flow solution

purposes but not ideal.

6 GENERAL MiULTIBLOCK APPLICATIONS

To illustrate the power of the multiblock approach, four configurations are considered. The grids
defined for each case have been generated using the automatic techniques described in sections 3 and
4. The default grids are acceptable for these cases but it is expected that the interactive grid
editing facility will prove necessary for other types of geometries. A numerical algorithm for the
solution of the Euler equations based on the ideas of Jameson, Schmidt and Turkell has been adapted to
enable the coupling with multiblock grids. Results are shown for some of the configurations
discussed.

6.,1Wingisejlage-ThreePylon-Store Configuration

Firstly, for the wing-fuselage-three pylon-store configuration already considered (Figure 2) a 1040
block component-adaptive topology has been constructed. 'C' grid structures were embedded local to
the wing and each of the pylons. A polar 'O' grid was defined around the fuselage whilst a spherical
polar grid structure was embedded local to the store. Flowfield solutions are shown for this
configuration and some of its simpler derivatives (Figure 9) illustrating the quality of solutions
typically obtained.

6.2 Research Civil Wing-Fuselage-Taillane Configuration

For the civil aircraft configuration shown in Figure 10, two alternative schematics of the geometry
were defined for the automatic topology generator, one in which the tailplane had the same elevation
as the wing and one in which the tailplane had a higher elevation than the wing. The grid topology
resulting from the former schematic was found to be easier to control and computationally more
efficient for the same number of surface grid points. The surface grid for this topology is given in
Figure 10.

6.3 Militarl Aircraft Configuration with prolsiern

The complexity of a modern military aircraft configuration with twi, w,.jine intakes and afterbody
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nozzles providec a gfod illustration of the applications of the techniques described. Figure 11 shows
the grids on the component surfaces together with slices of the grid in the flow domain. The grid
planes in the flowfield highlight the different grid structures generated local to the individual
components. An '0' grid stiia.ure was embedded local to the fLelage and afterbody nozzles, and 'C'
grid structures were constructed around the wing and foreplane. An 'H' grid structure was used to
model both the fin and the intake. Reference 8 presents example flowfield calculations on the wing
and foreplane surfaces.

6.4 Milit, arLAircraft with Tip Store and Winglets

The final example shows a surface grid for a research aircraft, indicating that the automatic grid
generation procedure in the muitiblock system can be applied to detailed geometric components.

7 CONCLUDING REMARKS

This paper concentrates on work undertaken in two main areas of multiblock grid generation, namely
topology construction and grid control. Effort has been steered towards automation with the aim of
transforming the multiblock technique to a more efficient and workable system. Consequently, the
level of expertise required from those implementing the system is reduced and this should promote its
practical use. To maintain a degree of flexibility within such a system, an interactive surface grid
editing facility has been developed to remedy any localised deficiencies. The wide range of example
configurations and flow solutions supports the continued use of multiblock techniques as a means of
constructing component adaptive grid topologies.
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RESUME

Parmi les types de g~n~ration de maillage, la m~thode de construction par "front",
partant de limites facett~es pr~d~finies, parait la plus prometteuse a V~gard des
configurations complexes dens le cadre de la methode num~rique des 61 ments finiT.

Sa souplosse et ses importantes possibilit~s d'adaptation en font un outil dont le
domaine d'application est tres large.

L'algorithme pr~sent6 fonctionne pour les maillages de configurations complexes
rencontr~es en a~ronautique :tuy~re de moteur a flux multiples, navette Hermes, Falcon.

1. INTRODUCTION

Le d~veloppement de mfthodes num~riques performantes pour la simulation de la mkcanique
des fluides a permis la mod~lisation de formes de plus en plus complexes, mais dont le d~lai de
discr~tisation tridimensionnelle inst devenu p~nalisant.

Ainsi dens he cadre de la m~thode des 616ments finis, Ilapparition de resolutions
num~riques fiables des equations d'Euler des kcoulements aerodynamiques en 3-D. et maintenant
des equations de Navier-Stokes, rend les calculs quotidiens et accroit le nombre de
configurations tudi~es.

Un effort important a donc port sur la r~alisation de mailleurs tridimensionnels non
structures efficaces, pour des domaines tr~s complexes.

Plusieurs proc~d~s de mod~lisation non structur~e ont ft 61abor~s, en particulier des
discr~tisations tftra~driques de lespace qui offrent la souplesse necessaire & la mod~lisation
de formes g~omntriques complexes.

Cette approche favorise aussi l'utilisation din m~thodes de raffinement et d'adaptation

din maillage.

Cette presentation d~crit une approche de ]a g~n~ration de maillages t~tra~driques sur
des formes quelconques (en 3-0) par une m~thode de front, et ses applications.

11. ALGORITHME DE GENERATION

1 . LA GENERATIOM PAR FRONT

La m~thode de creation par front inst caract~ris~e par la g~n~ration pas & pas de noeuds
et d'616ments s'appuyant sur he front.

Par rapport & des mailleurs structures ou des g~nerateurs globaux type Voronoi, la
m~thode par front apporte des avantages consid~rdbles:

-Une ind~pendance compl~te par rapport &la forme discretis~e, quelque soit sa
complexitO.

-Des possibilit~s din mod~lisation importantes, les liaisons t~tra~driques permettant
des configurations multiples.

-Une grande souplesse din contr6le de ha mod~lisation permettant un choix local din la
t~tra~drisation. Ellm offre donc de grandes possibilit~s d'adaptation din maillage,
pour capter finement les kcouleminnts a~rodynamiques.

- In traitement local des probl~mes rencontr~s, autorisant la multiplication des zones
den discr~tisation complexe.
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2. BISCRETISATION BE LA FRONTIERE INITIALE

La liscrftisation triangulaire (cas tridimensionnel) de la fronti~re initiale est
ind~pendante de la m~thode de maillage pr~sent~e.

Elle peut donc 6tre r~alis~e pr~aablement par des mailleurs surfaciques adapt~s A la
mod~isation d~sir~e aux limites, et permet l'6tablissement d'une base de donn~e de maillages
surfi.ciques.

La planche 1 pr~sente des exemples de maillages utilis~s.

3. ALGORITHME DE GENERATION

3.1. Presentation 2-D

3.1.1. Definition du front

Le front initial est une courbe orient~e C, d~finie par une suite de points D.

C

11 est possible de d~finir en tout point X de D, par interpolation d'une courbe du
deuxi~me degr au voisinage de x

- tne direction Nx norniale,
-une valeur scalaire CVx refl~tant la courbure de D en X, appel~e aussi concavit6.

CVx servira ainsi d'indicateur local de complexit6 de la forme.

3.1.?. Algrtm

Le g~n~rateur optimise la concavit6 (variable CV) stir les fronts successifs pour obtenir
la concavit6 d'un cercie.

Le principe d'optimisation consiste pour le noeud I de CV maximum a 6&ever des 6l6ments
suppl~mentaires A partir des barres de D voisines de 1, en cr~ant un noetid suppl~mentaire. 11
est place une distance DIST de I selon la direction Ni.

Un nouveau front est ainsi cr 6 en remplaqant I par II.

Le m~canisme d'optmisation est compl~t@ en analysant la position relative de 1I par
rapport aux noeuds d~jA existants. En cas de forte proximit@, il est confondu au noeud le plus
proche.
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3.1.3. Contr6le du front

Le contr6le du front s'exerce A deux niveaux, celui de la distance DIST (distance de I
a II) et celul de la taille des mailles a sa surface.

DIST est calcu1~e de mani~re A rendre les &16ments cr66s les plus r~guliers possibles,
multipli~e par un coefficient d'allongement QALL.

La surface du front est contr6l~e par deux param~tres

- Un coefficient QMIN dWinit la taille minimale accept~e des &16ments du front, si elle
est d~ipass~e, le front est modifi6 localement pour respecter la limite, soit par
suppression de la facette ou permutation de barre, salt par optimisation g~om~trique.

- Un coefficient QMAX determinant la taille maximale acceptc-e des 0l6ments du front, si
elle est d~pass~e, 1'61ment ainsi determines est sous-maill .

3.2. G~ndralisation 3-D

3.2.1. Definition du front

Le front initial est une surface orient~e S discr~tis~e en triangles.

11 est possible de d~finir en tout point x de 0, par interpolation des valeurs
6quivalentes aux notions 6tablies en 2-D

- Une direction Nx normale,
- Une valeur scalaire CVx refl~tant la courbure maxi sur S en X, appel~e aussi

coocavi t6.
plus

- Une valeur scalaire CXx refl~tant la courbure mini sur S en X, appel~e aussi
convexi t6.

L'indicateur de complexit6 de Ia surface est alors le couple (CV,CX).

La figure 1 pr~sente les valeurs des concavitds pour des configurations courantes de
1 a~ronautique.

Ainsi le bord de fuite d'une vol lure sera tr~s convexe et lemplanture de cette voilure
assez concave, lintersection entre les deux repr~sente un "point selle' dans le maillage, A la

4 fois tr~s concave et tr~s convexe, qul constitue la dlfficult6 majeure de la configuration.

3.2.2. Alpgtme

L'algorithme utilisL& est identique au cas 2-D. avec la prise en compte du facteur
suppl~mentaire de Ia convexitd dans la m~thode d'optimisation de la courbure.
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L'optimisation est limit~e au noeud I de CV maxi pat-mi les noeuds de CX faible, en
cr~ant alors des t~tra~dres ayant pour base les facettes voisines de I sur le front.

Le calcul de DIST et les contr~les du front a laide des coefficients QALL QMIN QMAX,
sont identiques au cas 2D.

4. ADAPTATION

Le programme est donc enti~rement pilot6 par un nombre de coefficients limit~s

- QALL Allongement des 616ments perpendiculairement au front.
- QMIN Taille minimale autoris~e des 0l@ments du front.
- QMAX Taille maximale autoris~e des 6l6ments du front.

qui permettent le contrble de la repartition des mailles.

Ainsi il est possible de d~duire des valeurs discrftes de ces coefficients en chaque
noeud du front, pour adapter le maillage a un champ de deormation donn , dkcrivant la
repartition de mailles voulue en un point quelconque de 1 'espace.

Cette repartition peut etre deduite d'un premier calcul sur une modelisation grossiere
de la forme 6tudi~e, suivant les zones d'int~r~t des calculs A effectuer.

Une description simple du champ de deformation peut @tre fournie par la connaissance en
tout point d'un tri~dre d~finissant l'allongement des 616ments selon trois directions
orthogonal es.

Les coefficients de g~n~ration peuvent alors @tre d~duits en un noeud I du front

- QALL est gal au maximum des normes des projections des vecteurs du tri~dre selon la
direction de la normale Ni du noeud 1.

.7

vecteurs du tri~dre

ZI

vecteurs du tri~idre

Ill. CONCLUSIONS

En utilisant des structures de donn~es ad~squates pour les operations de recherches
g~om~triques (arborescences), lalgorithme conduit A un temps de creation d'ordre o (N
Log(N)) pour un maillage non structur6 de N noeuds.

Cette ni~thode, coupl~e A un code de r~solution des Lsquations d'Euler, a prouv son
efficacit6 sur de nonibreuses configurations courantes de l'aronautique.

La planche 2 pr~sente plusleurs fronts lot-s de la cr~satlon de maillages pour ]a cabine
de l'Herm~s, une tuy~re de moteur.

La m~thode pr~sente en outre une possibllt6 d'adaptatlon importante de la
discr~tlsation perinettant ]a r~alisation d'it~ratlons sur diff~rents maillages lors d'un calcul
num~rique.
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UNSTRUCTURED FINITE ELEMENT MESH GENERATION AND ADAPTIVE
PROCEDURES FOR CFD

by
J. PERAIRE, K. MORGAN AND J. PEIRO
Department of Civil Engineering

University College
SWANSEA SA2 8PP

United Kingdom

SUMMARY

This paper describes a method for generating unstructured meshes of triangles or tetrahedra for computa-
tional domains of complex geometrical shape. To illustrate the power of the approach, it is applied to the solution of
flows past several complete aircraft configurations. The advocated approach allows for the natural incorporation of
mesh adaptivity and this is demonstrated for both inviscid and viscous computations in two and three dimensions.

1. INTRODUCTION

Over the past twenty years there has been a tremendous increase in the predictive capabilities offered by
computational fluid dynamics to the aerodynamic design process. The numerical techniques which have been de-
veloped Ill allow for highly accurate computations to be performed for three dimensional flows over relatively sim-
ple shapes, such as wings. This success has led naturally to an increasing interest in the simulation of flows in-
volving more complex geometries, such as complete aircraft configurations. The analyst responsible for such sim-
ulations is immediately faced with two major problems. The first is the problem of generating a mesh to cover the
computational domain of interest and the second is the problem of developing a technique for mesh adaptation to
improve the quality of the computed solution. Adaptive mesh methods will play an important role in the accurate
simulation of flows past complex three dimensional configurations, since the number of mesh points involved is
normally too large to contemplate the use of a uniform mesh subdivision.

One possible approach to overcome these difficulties is to allow the use of computational mesh which is com-
pletely unstructured. An early demonstration of the mesh generation capabilities of such methods was made by
Bristuau ct al 21, who computed the potential flow about a complete AMD/BA Falcon 50 configuration, and later by
Jameson ct al 13]. who solved the Euler equations for the flow past a complete Boeing 747. More recent papers 14-6)
show the current status of unstructured mesh generation techniques and indicate that the approach may now be
routinely used to handle complex aerodynamic configurations. The decision to employ an unstructured mesh has the
additional bonus that adaptive mesh tecnniques can then be implemented in . relatively straightforward manner.
For the simulation of steady two dimensional Euler flows on triangular meshes, the improvements to solution quality
which can be obtained by adaptive mesh enrichment methods was demonstrated by I 6hner et a! 17). However. en-
richment methods of this type are of limited usefulness for three dimensional analyses as the number of degrees of
freedom can grow rapidly at each mesh adaptation. In this paper, we will demonstrate an adaptive mesh procedure
which offers the possibility of enhancing the solution quality while allowing control over the increase in the total
number of mesh points The adaptivity is accomplished by complete regeneration of the mesh and an essential pre-
requisite will therefore be the development of an unstructured mesh generator with the ability to produce a mesh
which agrees to certain externally prescribed requirements. The generator will be used to mesh the computational
domain for the simulation of Euler flows about several complete aircraft configurations and sample solutions will be
presented. The application of adaptivity will be demonstrated for viscous flows involving simple geometries, but
complex flow features, in both two and three dimensions and also for the inviscid flow about a complete aircraft.

It should be mentioned that the decision to employ unstructured meshes for the solution of the compressible
Euler or Navier-Stokes equations implies the availability of a suitable solver which can operate on such meshes.
this subject is still in its infancy, in comparison with the massive investment which has taken place in the devel-
opment of structured grid solvers. However, the accuracy of the solution produced on completely unstructured
meshes can be expected to improve as the research effort in this area increases.

2. TWO DIMENSIONAL MESH GENERATION

We consider in this section the automatic generation of triangular meshes over arbitrarily shaped domains in
the two dimensional plane. The algorithm to be presented will be capable of generating meshes which conform to
an externally prescribed spatial distribution of element size. The ability to generate meshes which are locally
stretched along prescribed directions will be included. The mesh generation algorithm used is a variant of the so
called advancing front technique in which nodes and elements are created 8',91.r'usly [8,91.

The under;yiig basic concept in the advancing front technique is illustrated in figure 1. The boundary of
the domain is discretised first. Nodal points are placed on the boundary curves in such a way that the distance be-
tween them is as close as possible to the desired mesh spacing. Contiguous nodes on the boundary curves are joined
by straight line segments and assembled to form the initial generation front. At this stage the triangulation loop
begins. A side from the front is chosen and a triangle is generated that will have this selected side as one edge. In
generating this new triangle an interior node may be created or an existing node in the front may be chosen. After
generating the new element the front is conveniently updated in such a way that it always contains the sides which
are available to form a new triangle. The generation is completed whea no sides are left in the front.

2.1 Boundary Representation

The boundary of the two dimensional domain is represented by closet loops of orientated piecewise cubic
spline curves. For simply connected domains these boundary curves are orientated in a counter-clockwise sense
while for multi-connected regions the exterior boundary curves are given a counter-clockwise orientation and all
the interior boundary curv.-; are orientated in a clockwise sense (figure 2). When these boundary curves are dis-
cretised 110.111, the boundary edges forming the initial front are orientated in the same fashion. Here the orienta-
fion of a boundary edge is defined by the order in which the two nodes of the edge are listed in the front. The ori-
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Figure I Advancing front technique. Mesh generation Figure 2. Orientation of the boundary.
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entation of an edge is important as it identifies the area of the plane in which a valid triangle can be created using
that edge as a base.

2.2 Domain Discretisation

The generation of a regular triangular element of size 8 involves the following steps (figure 3):

(i) Select an edge AB from the generation front.
ii) Using the orientation of tle edge determine the position of point CI, which lies at a distance 8 from A

and B.
(iii) Determine all points in the front which lie inside a circle of radius 8 and centre at C1.
iv) Determine the positions of the equally spaced points C2, C3, C4 and C5 on the line jotning CI and the

midside point of AB.
v) Form a list containing all the points determined in step (iii) as well as points CI, C2, C3, C4 and C5. Points

in this list will be ordered according to their distance from the point Cl. For this ordering process the
calculated di,tances associated with points Cl, C2, C3, C4 and C5 are incremented by an amount 8/2.

vi) Create an element with nodes A, B and the first point in the list which satisfies the mesh consistency
requirement, i.e. the two newly created edges do not (ross any of the existing edges in the front.

(vii) Update the front by removing the edge AB, and adding the appropriate number of new edges with the
correct orientation.

2.3 Transformation for Stretching

The algorithm desciibed above produces meshes in which the triangles will tend to be equilateral and of uni-
form size 8. In order to generate meshes in which the element size depends on the direction, the idea of a stretching
transformation is introduced. Suppose that it is required to generate a mesh in which the elements will bc approxi-
mately of size 81 in the direction giL, and of size 82 in the direction ix,2. By applying a simple linear transformation
[10, the physical plane can be mapped into a parametric plane in which distances in the directions of U.1 and 92
have been scaled by amounts 51 and 82 respectively. In the parametric plane the mesh generator described above is
used to construe, a regular mesh of element size equal to unity. The required mesh can be obtained by transforming
the generated mesh back to the physical plane. The two vectors 2.1 and 9,2 and the scalar quantities 61 and 52 used to
define the characteristics of the mesh are termed the mesh parameters. This process is illustrated in figure 4.

2.4 Variable Size and Stretching

For most practical applications it will be required to produce a mesh in which the parameters will vary from
point to point in the domain. To specify this spatial variation of mesh parameters for the mesh generator a back-
ground mesh of linear triangles is employed. The mesh parameters are assumed to vary in a piecewise linear man-
ner and this is accomplished by specifying the values of these parameters at each node of the background mesh.
This background mesh must completely cover the domain which is to be discrctised but there is no requirement for
it to accurately follow the domain geometry. For most practical problems an initial mesh which exhibits a simple
distribution of mesh size and stretching. can be produced with a background mesh which consists of only a few tri-
angles Iloweer, the generation of more sophisticated meshes, as for example meshes adapted to the flow solution,
may require a substantially larger and more complex background mesh. A procedure to systematically produce
background meshes of this type will be described later in the section on adaptivity.

When the spatial distribution of mesh parameters has been specified the desired mesh can be obtained by
using the generation procedure illustrated in figure 5. In this figure the modifications to the previous procedure
which are necessary to include the effects of variable size and stretching have been indicated by using bold boxes.

To illustrate this process, two meshes which have been generated over a rectangular region using a back-
ground mesh containing only two triangular elements are shown in figure 6.

3. THREE DIMENSIONAL MESH GENERATION

The mesh generation strategy proposed here for three dimensional domains is a direct extension of that pre-
sented above for two dimensions. The three dimensional space is discretised into tetrahedral elements and the char-
acteristics of these elements are specified by the three dimensional mesh parameters, viz three mutually orthogonal
directions 21L. 2.2 and 1.3 with corresponding sizes 81, 82 and 63 (figure 7). During the generation process, the local
values of the mesh parameters are interpolated from a background mesh of linear tetrahedral elements. The bound-
ary of the three dimensional domain is defined in terms of orientated surface components which intersect along
curve components. The discretisation of the curve components is performed first and then each surface component
is discretised into orientated triangular faces. The procedures employed for discretising both curves and surfaces
make use of the techniques used in the two dimensional mesh generator described above. The collection of these tri-
angular faces forms the initial generation front. The advancing front approach is used to discretise the domain into
tetrahedral elements, with points and elements being created according to the distribution of the mesh parameters
specified by the background mesh. The front is updated as each new tetrahedron is generated and the process ter-
minates when the front is empty. This approach to the problem of discretising a general three dimensional domain
is illustrated schematically in figure 8.

3.1 Complete Aircraft Configuration

In computational aerodynamics, a typical problem of current interest is the prediction of the inviscid flow-
field abr t complete aircraft configurations. Figure 9(a) shows the computational domain which is adopted for the
simulation of such a problem involving flow past a generic fighter with canard, cranked delta wing, vertical fin
and engine inlet. The background mesh employed is illustrated in figure 9(b). The curve components, defined in
terms of cubic splines and the discretisation of these components is displayed in figure 9(c). The individual surface
components are described by patches of bi-cubic splines and the surface discretisation process is illustrated in fig-
ure 9(d). The triangulation of the components is performed by mapping each component in turn onto a two dimen-
sional parameter plane and employing the two dimensional mesh generator (111. The effect of the mapping on the
mesh parameters must be correctly interpreted, so as to ensure that the generated mesh meets the specified mesh
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b) background mesh, c) curve components representation and generated points,
d) surface discretisation and e) partial view of the tetrahedral mesh.
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requirements when mapped back onto the surface. The tetrahedra generation can now begin and an intermediate
stage of the process is displayed in figure 9(e). This process involves the same algorithmic steps as the triangle gen-
eration procedure described for two dimensions. However, the consistency test which must be done on the newly
generated elements is more complicated. In our implementation we ensure that no new edge intersects with any ex-
isting face in the front, and that no new face intersects with any existing edge in the front. Moreover, elements
with excessively small angles are not accepted.

3.2 The Alternate Digital Tree (ADT) Data Structure

From the previous section it is apparent that a successful implementation of the three dimensional mesh gen-
erator will require the use of a data structure which enables certain sorting and searching operations to be per-
formed efficiently. The main operations of this type which we have to perform are:

Insertion - Addition of new items to a list
Deletion - Removal of items from a list
Geometric searching - Identification of the elements from a list which are close in the physical space to a
specified item in the list.
Geometric intersection - Identification of the elements from a list which intersect in the physical space with
a specified item in the list.

The alternate digital tree [121 is a data structure which enables the above operations to be performed opti-
mally. It is a generalisation of the binary tree search [131 and has the ability to deal with either nodes, edges, faces
or elements as single items. It can be extended to any number of dimensions and only requires two additional mem-
ory addresses per item. An inconvenience associated with the ADT is that its use results in a scalar process with in-
tensive indirect addressing and it is therefore not vectorisable. However, it offers interesting possibilities for par-
allelisation which arc currently being explored.

In our implementation an ADT data structure is employed for the generation front and also for the back-
ground mesh. The computational performance of the method is illustrated in figure 10 which plots computer time
against the number N of elements generated. It can be observed that a typical N*log(N) behaviour is attained. The
three dimensional meshes shown in this paper have been generated on a VAX-8700 at an approximate rate of 30,000
tetrahedra per CPU hour.

3.3 Mesh Quality Assessment

Any discussion of mesh quality should be intimately related to the form of the solution which is to be rcpre-
,ented on the mesh. Two factors need to be considered here:

I.- Determination of the characteristics of the optimal mesh for the problem at hand. This introduces the con-
cept of adaptivity and this aspect is considered in the next section.

2.- Assessment of how well the generated mesh meets the requirements specified by the mesh parameters.
This assessment can be made by examining the generated mesh and determining the statistical distribution of
certain indicators. For example in figure 11 we have chosen as indicators the number of elements around an
edge, the dihedral angle and the edge length. These indicators are compared with optimal values which are
determined using the local values of the mesh parameters.

4. FLOW SOLVER

The solution of the Euler equations on arbitrary triangular and tetrahedral meshes is accomplished by using
an explicit two step finite element method [5,141. Stability in the vicinity of flow discontinuities is maintained by the
application of an explicit artificial viscosity based on a pressure sensor. Boundary conditions are applied via the
integral statement and are based upon the use of a linearised characteristic analysis. A highly vectorised form of
the code has been produced [151. The memory requirements for the three dimensional version of the code are 94
storage locations per node. On a single processor of a CRAY-XMP the time required per iteration and per node is ap-
proximately 70 microseconds.

For the solution of the Navier-Stokes equations, we employ a semi-structured mesh in the immediate vicinity
of solid walls and a fully unstructured mesh elsewhere. The semi-structured mesh is constructed by expanding
slightly the solid surface in the normal direction and dividing the region formed into a prescribed number of expo-
nentially stretched layers of quadrilaterals in two dimensions or triangular prisms in three dimensions. An implicit
solution scheme is used in the region where the mesh is semi-structured, with the mesh structure being utilised in
an equation solution procedure based upon line relaxation. On the unstructured portion of the mesh the explicit two
step algorithm is again applied 1161.

5. ADAPTIVITY

An adaptive mesh approach is proposed in which each mesh adaptation is accomplished by complete regener-
ation of the mesh. The computed solution on the current mesh is used to provide local information for the 'optimum'
distribution of the mesh parameters for the new mesh, The procedure is illustrated in the flowchart of figure 12. It
can be observed that the essential feature of the process is the determination of the new distribution for the mesh
parameters. This is accomplished by using an error indicator, which is produced here by applying the results of
interpolation theory [171.

5.1 Error Indicator

We assume that we have computed a converged solution to the problem of interest on a certain grid and we
intend to use this solution to predict the distribution of the error. Although we are dealing with a vector system of
equations, the error indication is generally based upon a representative scalar 'key' variable, generally the density
or the Mach number.



IS-6

INITIAL MS

COMPUTE SOLUTION-
ON THE CURRENT MESH a

0 oFIRST MESH SECOND MESH THIRD MESH
,2 0270 .rents 3 567 ef.ments 6 403 efemeants

DTLNI I 10 points 1 $64 points 3 294 points

DISTRIBUTION OF MES
PARAMETERS

REGENERATE A NEW
MESH

FINAL OLUTIO

Figure 12. Adaptation procedure.

MAHNUMBER M- - a.15
SOLUTION a-30

Figure 13. Adaptive remeshing. Hypersonic flow over a double ellipse.

A B CD

C 279 196 TETRAHEDRAL

B53 066 NODAL POINTS
-Cp -CP

A -Cp

-C

K- x.-

SECTION A-A SECTION B-9 SECTION C-C SECTION D-D

Figure 14. Transonic W4 wing.



18-7

GEOMETRY DEFINITION

57 INTERSECTION LINES
29 SURFACE COMPONENTS

SURFACE 26 060 TRIANGULAR FACES DOMAIN 388 614 TETRAHEDRAL ELEMENTS

PRESSURE SOLUTION

Figure 15. Boeing 747 in landing configuration.
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Figure 16. F-18 fighter configuration.
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The error indication procedure is first illustrated in one dimension. Having chosen a key variable 0, we as-
sume that the computed nodal values are exact and then estimate the root mean square value of the local error as

EeRMS 1 22 (5.1)

The second derivative can be estimated, on a mesh of linear elements, by using the technique of variational recov-
ery [14]. Applying the requirement of equi-distribution of the error [18], it follows that the size 8 on the new mesh
should be computed according to

82 A, constant (5.2)

When these ideas are extended into two or three dimensions, we encounter a matrix m of second derivatives.
The criterion of equi-distribution of the error leads to the requirement

p2= constant (5.3)

for the size Sp in direction IL. The local mesh parameters 81, 82 and 83, with corresponding directions G.1, G.2 and 2.3,
for the new mesh are now obtained by applying equation (5.3) in each of the principal direction,; of the matrix m
in turn. The value adopted for the constant in equation (5.3) is proportional to the level of accuracy desired and
hence governs the number of elements that will be present in the new mesh. It is apparent that in regions of uni-
form flow the computed values of the mesh size will be very large. Practical mesh generation constraints therefore
require that the user should specify a maximum allowable value for the local size on the new mesh.

5.2 Adaptive Mesh Regeneratiot.

With the values of the new mesh parameters computed at every node of the current mesh, the mesh genera-
tion process is employed again but now using the current mesh as the background mesh. The application of this ap-
proach is illustrated in figure 13, which shows the results obtained for the problem of two dimensional inviscid flow
at a Mach number of 8.15 past a double ellipse configuration at 300 angle of attack.

6. EXAMPLES

In this section we present some examples which demonstrate the application of the techniques described
above to the modelling of aerodynamical flows.

6.1 Transonic Wing

The transonic flow past a W4 wing is computed. The free stream Mach number is 0.778 and the angle of attack
is 0.520. The outer boundary of the computational domain was taken at a distance of 15 root chords. A total of 279,196
tetrahedra is employed to discretise the solution domain. Although the ratio of the maximum to the minimum ele-
ment size is of the order of several hundred, very little distortion is observed. Figure 14 shows the triangulation on
the surface of the wing and the pressure coefficient distribution at various cross sections along the wing span after
2,000 iterations.

6.2 Boeing 747 in Landing Configuration

The flow past a landing Boeing 747 aircraft at a Mach number of 0.3 and 50 angle of attack is considered. Fig-
ure 15 shows the geometry definition employed which utilises 35 surface components together with the surface tri-
angulation and the pressure distribution computed. The surface is represented by 26,060 triangular faces. The com-
putational domain extends 30 chord lengths and is filled with 388,614 tetrahedral elements of varying size but with-
out distortion. It is noted that the slats and flaps are modelled deployed with the trailing flaps detached from the
main wing.

6.3 F-18 Fighter Configuration

The surface geometry of an F-18 configuration is defined in terms of 37 surface components and 87 line com-
ponents. The body surface is discretised into 61,468 triangular faces and the computational domain is filled with
903,282 tetrahedral elements. A flow simulation was made at a Mach number of 0.9 and an angle of attack of 30. En-
gine inlet conditions took the form of a specified Mach number of 0.4 and a jet pressure ratio of 3 was assumed to
determine the outlet conditions. The surface definition and the computed surface pressure contour distributions are
shown in figure 16.

6.4 Shock Interference on Cylindrical Leading Edges

The prediction of the aerodynamic heating resulting from shock interaction problems on cylindrical leading
edges is of great interest to the designe'rs of hypersonic vehicles. Interactions of this type can lead to highly lo-
calised and intense pressures and heat transfer rates [191 which result in stress levels which are a significant haz-
ard to load carrying structures. A two dimensional laminar Navier-Stokes simulation has been attempted using the
adaptive remeshing procedure. The undisturbed free stream Mach number is 8.03 and the Reynolds number, based
upon the cylinder radius is 1.710105. The fluid which has been turned by the shock generator enters the computa-
tional domain with a Mach number of 5.26. The mesh obtained after two adaptive iterations and the temperature
contour distribution are shown in figure 17a. A structured mesh of 32 exponentially stretched layers has been used
in the vicinity of the cylinder surface. Interest is now being directed towards a study of a similar problem in threedimensions where the cylindrical leading edge is swept in an attempt to determine whether or not the same be-haviour can be expected. The experimental configuration and the domain chosen for the computational simulation
diesosweeteclnrcllaigeg sseti natmtt eemn hte rnttesm e
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is shown diagrammatically in figure 17b. An inviscid analysis was performed first and the initial mesh used and the
adapted meshes produced, with corresponding computed density contour distribution, are shown in figure 17c. A
viscous simulation has been attempted using the initial mesh and adapted mesh shown in figure 17d. The distribu-
tion of the pressure (Cp) on selected planes is also shown as is the comparison between experimental and computed
surface pressure and heat transfer distributions. In this case ten structured layers of triangular prisms are em-
ployed in the vicinity of the cylinder surface.

6.5 Generic Fighter Configuration

In this example the adaptive remeshing procedure is applied for first time to a full aircraft configuration.
The geometry considered is that of the generic fighter model used for illustration in section 3 above and which has
been studied previously using an algebraic structured mesh generation approach [20]. The flow conditions corre-
spond to a supersonic Mach number of 2 and an angle of attack of 3.790 The computational domain considered in-
cludes a full simulation of the engine air intake. The engine inlet was modelled by prescribing an engine opera-
tional Mach number of 0.3. Supercritical flow conditions were prescribed at the engine outlet. The first mesh used
consisted of 153,044 elements and the solution obtained for the pressure on the plane of symmetry and on the sur-
face of the fighter is displayed in figure 18. In the remeshing procedure the density was chosen as the 'key' vari-
able. The regenerated mesh consists of only 140,250 elements with the minimum element size being 3.5 times smaller
than tn the first mesh. Ihis increase in resolution is apparent by examining the solution on the regenerated mesh
which is also shown in figure 18. The surface of the fighter is represented in the regenerated mesh by 14,524 trian-
gular faces, whereas only 8,256 triangular faces were used in the initial mesh.

7. CONCLUSIONS

We have presented an approach for generating unstructured meshes for computational domains of complex
shape in both two and three dimensions. An essential feature of the advocated method is that it allows for the incor-
poration of a solution adaptive mesh procedure in a natural manner. Although the approach is powerful, in that it
allows solutions for complete aircraft configurations to be obtained in a timescale of the order of two or three days,
certain major problem areas still remain to be resolved. To improve the accuracy of the computed solutions, we need
to be able to obtain more control on the quality of the generated mesh and to simultaneously develop solution algo-
rithms which arc less sensitive to the mesh quality. To improve the performance of the adaptivity algorithm we
need to produce more sophisticated and reliable error indicators, which will enable the distribution of the new
mesh parameters to be predicted with a high degree of confidence. While these problems remain, it is worth noting
the rapid pr ,.ress that has recently been made in the use of unstructured meshes for the simulation of aerody-
namic flos. If this progress is maintained, it can be expected that unstructured mesh methods will play an in-
creasingly important role it this area in the near future.

REFERENCES

1. A. Jameson, "Successes and challenges in computational aerodynamics", AIAA paper 87-1184, 1987.

2. M. 0. Bristeau, 0. Pironneau, R. Glowinski. J. Periaux, P. Perrier and G. Poirier, "On the numerical solution of
non-linear problems in fluid dynamics by least squares and finite element methods I1 : Application to tran-
sonic flow simulations", Proceedings of the 3rd International Conference on Finite Elements in Nonlinear Me-
chanics. FENOMECH84. Stuttgart, edited by J. St. Doltsinis, North Holland, 363-394, 1985.

3 A. Jameson, T. J. Baker and N. P. Weatherill, "Calculation of inviscid transonic flow over a complete aircraft".
AIAA Paper 96-0103, 1986.

4. T, J Baker. "Three dimensional mesh gencration by triangulation of arbitrary point sets", AIAA paper 87-
1124, 1987.

5. J. Peraire, J. Peiro, L. Formaggia, K. Morgan and 0. C. Zienkiewicz, "Finite element Euler computations in
three dimensions", Int. J. Num. Meth. Engng., 26, 2135-2159, 1988.

6. B. Stouffict, J. Periaux, F. Fezoui and A. Dervieux, "Numerical simulation of 3D hypersonic Euler flows around
space vehicles using adapted finite elements", AIAA Paper 87-0560, 1987.

7. R. LOhner. K. Morgan. J. Peraire and 0. C. Zienkiewicz, "Finite element methods for high speed flows", AIAA
Paper 85-1531-CP, 1985.

8 A. J. George, "Computer implementation of the finite element method". Ph. D. Thesis, Stanford University,
STAN-CS-71-208. 1971.

9. J. Peraire, M. Vahdati, K. Morgan and 0. C. Zienkiewicz, "Adaptive remeshing for compressible flow computa-
tions". J. Comp. Phys., 72, 449-466, 1987.

10. J. Peraire, J. Peiro. K. Morgan and 0. C. Zienkiewicz, "Finite element mesh generation and adaptive procedures
for CFD", Lecture presented at the GAMNI/SMAI Conference on Automated and Adaptive Mesh Generation,
Grenoble, France, 1-2 October 1987.

II, J. Peiro, J. Peraire and K. Morgan, "The generation of triangular meshes on surfaces", Proceedings of the
POLYMODEL XII Conference, Newcastle upon Tyne. May 23-24. 1989.

12. J. Bonet and J. Peraire, "An alternate digital free algorithm for geometric searching and intersection prob-
lems". University College of Swansea Report C/R/619/88.

13. D. E. Knuth, " The an of computer programming, Volume I : Fundamental Algorithms", 2nd Edition, Addison
Wesley Pub. Co., 1973.



18-12

14. K. Morgan and J. Peraire. "Finite element methods for compressible flows" vun Karman Institute for Fluid Dy-
namics, Lecture series 1987 - 04, 1987.

15. L. Formaggia, J. Peraire, K. Morgan and J. Peiro, "Implementation of a 3D explicit Euler solver on a CRAY com-
puter", Proceedings of the 4th International Symposium on Science and Engineering on CRAY Supercomput-
ers, 45-65, Minneapolis, 1988.

16. 0. Hassan, K. Morgan and J. Peraire, "An adaptive implicit/explicit finite element scheme for compressible
viscous high speed flows", AIAA Paper 89-0363, 1989.

17. P. G. Ciarlet, "The finite element method for elliptic problems", North holland, 1978.

18. J. T. Oden, "Grid optimisation and adaptive meshes for finite element methods", University of Texas at Austin
Notes, 1983.

19. A. R. Wieting, "Experimental study of shock wave interference heating on a cylindrical leading edge", NASA
TM 100484, 1987.

20. L.-E. Eriksson, R. E. Smith, M. R. Wiese and N. Farr, "Grid generation and inviscid flow computation about
cranked-winged airplane geometries", AIAA Paper 87-1125, 1987.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support received from the Aerothermal Loads Branch at NASA Langley
Research Center, Avions Marcel Dassault under the HERMES project and also the Civil and Military Aircraft Divisions
of British Aerospace plc.



19 - 
1

GENERATION AND ADAPTATION OF 3-D UNSTRUCTURED GRIDS

FOR TRANSIENT PROBLEMS
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Washington, D.C. 20052, USA

SUMMARY

We describe grid generation and adaptive refinement techniques suitable for the simulation
of strongly unsteady flows past geometrically complex bodies in 3-D. The grids are generated
using the advancing front technique. Emphasis is placed not to generate elements that are
too small, as this would severely increase the cost of simulations with explicit flow solvers.
The grids are adapted to an evolving flowfield using simple h-refinement. A grid change is
performed every 5-10 timesteps, and only one level of refinement/coarsening is allowed per
mesh change.

1. INTRODUCTION

While the development of numerical algorithms to solve the Euler and Navier-Stokes
equations has reached a considerable degree of maturity, the development of grid generation
schemes has lagged behind. Currently, this area is the pacing item that precludes the fill
exploitation of CFD for engineering design and analysis. The methods proposed so far for the
generation of unstructured grids may be grouped into two families:

a) those that fill 'empty', i.e. not yet gridded space, and
b) those that improve an existing grid, starting from a grid that only considers boundary

points.
The first family of methods are the so-called advancing front algorithms [1-6], whereby empty
space is filled by the introduction of elements. The second family of methods are the so-called
generalized Voronoi algorithms [7-16], whereby an existing grid is improved by the introduction
of points. Besides the choice of how to grid 3-D space, one must provide information as to how
the element size, stretching and stretching directions, or equivalently the point distribution
should vary in space. Two main families of methods may be identified:

a) schemes that generate the point distributions before gridding the domain, and
b) schemes that generate the point distributions while gridding the domain.

For the first family of methods, points have been generated from cartesian point distributions
with or without embedding [1,10], random point distributions with or without embedding
(2,7-9,11-13], and point distributions obtained from overlapping algebraic grids (14,151. For
the second family of methods, point distributions have been generated based on background
grids (3-5], or according to some desired grid quality not yet achieved by the current grid [6,16].
Within an adaptive remeshing context [25-27], the background grid concept clearly offers the
greatest flexibility. However, for the generation of a first mesh one may prefer one of the other
schemes.

A second, separate issue that must be addressed is the technique used to define the
domain to be gridded. More specifically: the definition of the surfaces surrounding the flow
fields. Among the many techniques available, we mention: analytic definition (for simple
geometries), Bezier-patches, and transfinite mappings. Our experience indicates that the input
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of the surface-defining information typically takes a large portion of the total grid-generation
time. It is man-hour intensive and difficult to automate. The advent of powerful graphics
workstations, such as the IRIS-4D, has made it possible to considerably reduce the time
required to input the information necessary for the generation of three-dimensional grids [171.
This is accomplished by providing the user with rapid and clear visualization of input and
output. At the same time, error checking is provided in a natural way.

Finally, the third issue that must be addressed is the grid cdaptation to the solution.
Particularly for transient problems involving shock impact and reflection, the element size
needed to achieve high accuracy changes with the position of the discontinuities. It would be
extremely wasteful to use an overall fine grid. Therefore, we adapt the mesh to the solution
as it evolves in time. We have found that classic h-refinement [20-24] works best for strongly
unsteady flows, where a grid change is required every 5-10 timesteps. On the other hand, for
slowly unsteady flows, we prefer adaptive remeshing [25-27].

2. THE GRID GENERATOR: ADVANCING FRONT WITH BACKGROUND
GRID

The main algorithmic steps required to generate a grid using the advancing front method
with ! cint distributions imposed by a background grid are as follows:

F.1 Define the boundaries (surfaces) of the domain to be gridded. In the current approach,
this is done with surface patches. At the same time, find the intersection lines of these
surface patches.

F.2 Set up a background grid to define the spatial variation of the size, the stretching, and
the stretching direction of the elements to be generated. The background grid consists
of tetrahedrons. At the nodes define the desired element size, stretching and stretching
direction. This background grid must completely cover the domain to be gridded.

F.3 Using the information stored on the background grid, form sides along the lines where
surface patches intersect.

F.4 Using the information stored on the background grid, and the sides formod along the
lines connecting surface patches, generate faces on each surface patch. The assembly of
all these faces yields the initial front. At the same time, find the generation parameters
(element size, stretching and stretching direction) for these faces from the background
grid.

F.5 Select the next face to be deleted from the front; in order to avoid large elements crossing
over regions of small elements, the face forming the smallest new element is selected as
the next face to be deleted from the list of faces.

F.6 For the face to be deleted:

F.6.1 Select a 'best point' position for the introduction of a new point IPNEW.

F.6.2 Determine whether a point exists in the already generated grid that should be used
in lieu of the new point. If there is such a point, set this point to IPNEW and continue
searching (go to F.6.2).

F.6.3 Determine whether the element formed with the selected point IPNEW does not
cross any given faces. If it does, select a new point as IPNEW and try again (go to
F.6.3).

F.7 Add the new element, point, and faces to their respective lists.

F.8 Find the generation parameters for the new faces from the background grid.

F.9 Delete the known faces from the list of faces.

F.10 If there are any faces left in the front, go to F.5.

There are several interesting algorithmic aspects which should be mentioned:



a) Extensive use is made of optimal data structures to perform the search operations involved.
In particular, we use heap-lists to find the next face to be deleted (step F.5), quad-trees
to find the closest given points to a new point (step F.6.2), and linked lists to find the
faces adjacent to a given point (step F.6.3). We combine quad-trees and linked lists to
find for any given location the values of generation parameters from the background grid
(steps F.3,F.4 and F.8). The algorithmic complexity of the overall algorithm should be
of O(N log N). In practice, we find it to be closer to O(N), as we continuously delete
domain points from the lists, and the subroutine-calls require some overhead.

b) The checking of face-intersections is a non-trivial problem in 3-D. It also requires a large
amount of CPU-time due to the algorithmic complexity involved. In order to make this
process faster, a layered face-checking approach was implemented [5]. This resulted in a
significant reduction of CPU time.

c) The current version of the 3-D grid generator code runs at about 450-500 tetrahe-
dra/second on a CRAY-2S. Thus, it takes about 40 minutes to generate a grid of one
million tetrahedra. Such a grid is deemed adequate for most standard Euler calculations.

d) In order to speed up the grid generation process further, we use global h-refinement. This
is accomplished by subdividing each tetrahedron into eight smaller ones. As this operation
is totally vectorizable, it poses no overhead for the grid generator. Grid generation times
are thus reduced by a factor of eight, making it possible to generate a grid of one million
tetrahedra in approximately 5 minutes.

e) Most of the current shock-interaction flow codes advance the solution in time using explicit
schemes. Therefore, it is important not to create even a single element that is too small.
To this end, we have developed post-processing routines that delete from the mesh all
elements that are too small.

3. A VORONOI ALGORITHM WITH BACKGROUND GRID

In certain applications (e.g. simple finite-volume Maxwell-solvers), one may desire to
guarantee that the generated grid represents a Delauney triangulation. We can also use the
background-grid concept to obtain point-distributions in conjunction with Delauney triangu-
lations. All that is required is to modify the algorithm described above as follows:

F.5 Select the next element to introduce a point; it makes good sense to introduce a point
for the element that shows the highest discrepancy between the actual and the desired
element size and shape.

F.6 For the element where a point is to be introduced:

F.6.1 Introduce the new point IPNEW.

F.6.2 Determine the tetrahedra that have to be broken up in order to recover a Delauney
triangulation.

F.8 Find the desired element size and shape for the newly formed tetrahedra from the back-
ground grid.

4. ADAPTIVE REFINEMENT

Besides their ability to discretize accurately complex geometries, a second very attractive
feature of unstructured grids is the ease with which adaptive refinement can be incorporated
into them. The addition of further degrees of freedom does not destroy any previous structure.
Thus, the flow solver requires no further modification when operating on an adapted grid. For
many practical problems, the regions that need to be refined are extremely small as compared
to the overall domain. Therefore, the savings in storage and CPU-requirements typically range
between 10-100 as compared to an overall fine mesh [22,23]. Our experience indicates that
for the majority of the daily production-type runs, adaptive refinement makes the difference
between being or not being able to run the problems to an acceptable accuracy in a reasonable



time [231. Without it, we would be forced to use much coarser grids, with lower accuracy, for
the same expense.

Any adaptive refinement scheme is composed of three main ingredients. These are
1) an optimal-mesh criterion,
2) an error indicator, and
3) a method to refine and coarsen the mesh.

They give answers to the questions
1) how should the optima] mesh be?,
2) where is refinement/ coarsening required ?, and
3) how should the refinement/ coarsening be accomplished ?

Many variants of each of these subtopics have been explored and shown to be useful for a
certain class of problems [18,19]. Here, we seek a method that is efficient and reliable for
transient compressible flow problems. This leads us to the following design criteria for the
error indicator:

a) The error indicator should be fast.
b) The error indicator should be dimensionless, so that several 'key variables' can be moni-

tored at the same time.
c) The error indicator should be bounded, so that no further user intervention becomes

necessary as the solution evolves.
d) The error indicator should not only mark the regions with strong shocks to be refined,

but also weak shocks, contact discontinuities and other 'weak features' in the flow.

For the refinement method, the design criteria are as follows:

e) The method should be conservative, i.e. a mesh change should not result in the production
or loss of mass, momentum or energy.

f) The method should not produce elements that are too small, as this would reduce too
severely the allowable timestep of the explicit flow solvers employed.

g) The method should be fast. In particular, it should lend itself to some degree of paral-
lelism.

h) The method should not involve a major storage overhead.

4.1 The Error Indicator

An error indicator that meets the design criteria a)-d) was proposed in [22]. In general terms,
it is of the form

h 2 Isecond derivatives
error - h Ifirst derivativesl + e Imean valuel

By dividing the second derivatives by the absolute value of the first derivatives the error indi-
cator becomes bounded, dimensionless, and the 'eating up' effect of strong shocks is avoided.
The terms following c are added as a 'noise' filter in order not to refine 'wiggles' or 'ripples'
which may appear due to loss of monotonicity. The value for e thus depends on the algorithm
chosen to solve the PDEs describing the physical process at hand. The multidimensional form
of this error indicator is given by

El= IlkI (fn N IJdf -Ul' )2  (1)

EkZ/,fn IN,' I [IN JUiI + c(INJI) dQ)2 '

where N' denotes the shape-function of node I. After having determined the values of the
error indicators in the elements, all elements lying above a preset threshold value CTORE are
refined, while all elements lying below a preset threshold value CTODE are coarsened.



4.2 Adaptive Refinement Method

Extensive experience in 2-D indicates that the only two refinement methods that are truly
general and efficient for the class of problems considered here are h-refinement [20-24] and
remeshing [25-27]. However, for strongly unsteady problems, where a new grid is required
every 5-10 timesteps, local h-refinement seems to be preferable. Several reasons can be given
for this choice. Firstly, h-refinement is easy to implement and maintain. Secondly, h-refinement
is very well suited to vector- and parallel processors. This is of particular importance in the
present context, where a mesh change is performed every 5-10 timesteps. Thirdly, conservation
presents no problem for h-refinement.
In order to obtain an algorithm that is as simple and fast as possible, we limit the number of
refinement/ coarsening levels per mesh change to one. Moreover, we only allow refinement of a
tetrahedron into two (along a side), four (along a face) or eight new tetrahedra. We call these
tetrahedra 1:2, 1:4 and 1:8 tetrahedra or refinement cases respectively. At the same time, a 1:2
or 1:4 tetrahedron can only be refined further to a 1:4 tetrahedron, or by first going back to a
1:8 tetrahedron with subsequent further refinement of the 8 sub-elements. We call these the
2:4, 2:8+ and 4:8+ refinement cases. The refinement cases are summarized in Figure 1. This
restrictive set of refinement rules avoids ill-deformed elements, and considerably simplifies the
grid logic. An interesting phenomenon that does not appear in 2-D is the apparently free
choice of the inner diagonal for the 1:8 refinement case. As shown in Figure 2, we can place
the inner four elements around the inner diagonals 5-10, 6-8, or 7-9. In the present case, the
shortest inner diagonal was chosen. This choice produces the smallest amount of distorted
tetrahedra in the refined grid. When coarsening, we again only allow a limited number of
cases that are compatible with the refinement. Thus, the coarsening cases become 8:4, 8:2,
8:1, 4:2, 4:1, 2:1. These coarsening cases are summarized in Figure 3.

4.3 Algorithmic Implementation

One complete grid change requires algorithmically the following five steps:

1) Construction of the missing grid information needed for a mesh change.

2) Identification of the elements to bc refined.

3) Identification of the elements to be deleted.

4) Refinement of the grid where needed.

5) Coarsening of the grid where needed.

4.3.1 Construction of Missing Grid Information

The missing information consists of the sides of the mesh and the sides adjoining each element.
The sides are dynamically stored in two arrays, one containing the two points each side connects
and the other one (a pointer-array) containing the lowest side-number reaching out of a point.
The formation of these two arrays is accomplished in three main loops over the elements, which
are partially vectorizable. After having formed thece two side-arrays, a further loop over the
elements is performed, identifying which sides belong to each element.

4.3.2 Identification of Elements to be Refined

The aim of this sub-step is to determine on which sides further gridpoints need to be introduced.
To this end, we first determine - using the modified error indicator given by eqn.(l) and
the prescribed refinement tolerance CTORE - those elements that require further refinement.
Thereafter, if desired, protective layers of elements are to be added ahead of the feature to be
refined. After having identified the elements to be refined, we delete from the list of elements
to be refined those elements which are already too small (if a minimum allowed element size
has been given), or have already been refined too many times (if a maximum allowed number
of refinement levels has been prescribed).



With the side/element information obtained in sub-step 4.3.1, we can now determine a first set
of sides on which new gridpoints need to be introduced. This set of sides is still preliminary,
as we only allow certain types of refinement. Therefore, special logic is incorporated for the
1:2 and 1:4 tetrahedra in order to obtain the allowable refinement cases shown in Figure 1.
We then perform as many loops as required (usually two or three) over the elements, adding
further sides whenever an unallowed refinement case appears. This then yields the final set of
sides on which new gridpoints are introduced.

4.3.3 Identification of Elements to be Deleted

As before, we start by determining - usiug the modified error indicator given by eqn.(1) and the
prescribed deletion tolerance CTODE - those elements that should be coarsened. Thereafter,
only the parent elements to be coarsened are considered further. This set of elements is
still preliminary, as we only allow certain types of coarsening. Therefore, special logic is
incorporated in order to obtain the allowable coarsening cases shown in Figure 3. While the
refinement logic yielded a set of sides where new gridpoints are to be introduced, the coarsening
logic yields a set of points to be deleted. We call this set of points the 'total deletion points'.

4.3.4 Refinement of the Grid Where Needed

The introduction of further points and elements is performed in two independent steps, which
in principle could be performed in parallel.
To add further points, the sides marked for refinement in sub-step 4.3.2 are grouped together.
For each of these sides a new grid-point will be introduced. The interpolation of the coordinates
and unknowns is then performed using the side/point information obtained in sub-step 4.3.1.
These new coordinates and unknowns are added to their respective arrays. In the same way
new boundary conditions are introduced where required.
In order to add further elements, the sides marked for refinement are labelled with their
new gridpoint-number. Thereafter, the element/side information obtained in sub-step 4.3.1
above is employed to add the new elements. The elements to be refined are grouped together
according to the refinement cases shown in Figure 1. Each case is treated in block fashion
in a separate subroutine. Perhaps the major coding breakthrough was the reduction of the
many possible refinement cases to only six. In order to accomplish this, some information for
the 2:8+ and the 4:8+ cases is stored ahead in scratch arrays. After these elements have been
refined according to the 2:8 and 4:8 cases, their sons are screened for further refinement using
this information. All sons that require further refinement are then grouped together as 1:2 or
1:4 cases, and processed in turn.

4.3.5 Coarsening of the Grid Where Needed

The deletion of points and elements is again performed in two independent steps, which in
principle could be performed in parallel.
The points to be deleted having been marked in sub-step 4.3.3 above, all that remains to be
done is to fill up the voids in the coordinate-, unknown- and boundary condition-arrays by
renumbering points and boundary conditions.
The deletion of elements is again performed blockwise, by grouping together all elements corre-
sponding to the coarsening cases shown in Figure 3. Thereafter, the elements are also renum-
bered (in order to fill up the gaps left by the deleted elements), and the point-renumbering is
taken into consideration within the connectivity-arrays.



5. NUMERICAL 

EXAMPLES

5.1 Spherical Blast-Wave: The problem statement, as well as the solutions obtained are shown
in Figure 4. An octant of a cube in the lower left hand corner was given a density of 10.0 and
a pressure of 40.0, while the rest of the computational region was filled with density 1.0 and
pressure 1.0. Because all grid points inside radius 5.1 were disturbed and all gridpoints outside
were not, the surface of the cylinder on the finite element grid is not completely circular. The
number of refinement levels allowed in this case was NREMX=2 which would correspond to a
regular grid of 6*32*32*32=196,608 elements. This case was run to test the symmetry or
'circularity' of the numerical solution. Figure 4a shows the initial grid, and the solution at
time T=0.0. Figure 4b shows the solution at time T=4.4. At this time, the mesh has increased
to NPOINf2,894 points and NELEM=14,112 elements. The 2-D equivalent of this case shows
no implosion effect, whereas in the present case at later times we observe a negative radial
velocity (pointing towards the origin). Figure 4c shows the solution at time T=7.3. The mesh
now consists of NPOIN=5,068 points and NELEM=26,006 elements.

5.2 Shock-Locomotive Interaction: The problem statement, as well as the solution at time
T=5.0 are shown in Figures 5(a-d). A weak shock (M. = 1.4) interacts with a diesel-electric
locomotive head-on. The grid consisted of NELEM-261,865 elements and NPIN-47,730 points.
Figures 5a,b show two views of the surface mesh from different angles. As this is a shock-
object interaction case run without adaptive refinement, a fairly uniform grid was employed.
Figures 5c,d show two views of the surface pressure at time T = 1.4. The main shock has
reflected from the lower front portion of the locomotive, and is about to reflect from the top
front portion. The total run-time required on the CRAY-2 for this run was approximately 2
hours. The overall turnaround time was of the order of two days: about 3 hours to sketch,
input and edit the surface definition, 1 hour for background grid input and distance parameter
distribution trials, five minutes to generate the mesh on the CRAY-2, 2 hours to run the
calculation. The rest of the time was spent waiting in queues, transmitting files back and
forth between the workstations and the CRAY-2, and plotting.

5.3 Compression Corner: The problem statement, as well as the solutions obtained are shown
in Figure 6. Supersonic flow at M,,, = 3.0 interacts with two wedges that are positioned per-
pendicular to each other. Each wedge by itself would produce an attached shock at the leading
edge. The two shocks produced by the wedges interact with each other, producing a significant
overpressure. The number of refinement levels allowed in this case was NREMX-2 which would
correspond to a regular grid of 64*11,197=716,608 elements. Figure 6a shows the initial grid,
and the corrc'ponding steady-state solution. Observe that the interaction region of the shocks
is decribed pocrly due to the lack of grid resolution. This first mesh was then refined once,
resulting in a grid of NELEM37,823 elements and NPOIN-7,312 points. After converging the
solution on this mesh to steady-state, a second refinement was invoked. Figure 6b shows this
grid after the sv.cond refinement, and the corresponding steady-state solution. This final mesh
contains NELE-191,030 elements and NPOIN=35,007 points. Observe how the interaction
region of the shocks becomes more and more defined as the grid is refined further.

6. CONCLUSIONS

Fast, general, user-friendly grid generation and adaptive refinement represent major in-
gredients in any design and analysis capability. While we have witnessed major developments
in both areas, one can identify the following shortcomings at the present time:

For the grid generators:
- A more direct link to the CAD data bases to reduce data conversion times.

- Improved interactive tools to reduce input times.
-Better ways to input background grids or other element-size defining information.



- More control over the resulting tetrahedral elements, in particular shape.
- Better smoothing schemes for tetrahedral meshes.

- Improved display capabilities for unstructured grids.

For adaptive refinement methods:
- Error indicators for viscous flows.

- Refinement methods for transient, viscous flows with separation.
- Combinations of h-refinement and remeshing for strongly unsteady flows with moving

bodies.
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SUMMARY

A method for generating tetrahedral meshes will be described. The algorithm is based on
the Delaunav triangulation and can treat objects of essentially arbitrary complexity. In order
to preserve the surface triangulation of solid objects, it is necessary to override the Delaunay
property and redefine the triangulation when points are introduced close to solid boundaries
Details of the generalized algorithm are presented and an efficient implementation of the
triangulation method is described.

1. INTRODUCTION

Tetrahedral meshes offer an attractive approach to the problem of discretizing the space
around complex three dimensional shapes. In principle, it is always possible to connect a
collection of mesh points to provide a surface conforming mesh of tetrahedra around an object of
essentially arbitrary complexity. However, the problem of finding an efficient and reliable
algorithm to achieve this task is far from trivial.

There are at least three methods that have been used to generate tetrahedral meshes.
Shephard et al. [1] have developed a mesh generator which first derives an octree representation
of the object and surrounding space and then cuts each of the octree cubes into tetrahedra. The
main difficulty in this approach is the problem of finding a consistent and unambiguous way of
treating the surface of the solid object. The moving front technique has been successfully
developed three dimensions by Peraire et al. [2] and Ldhner [31. The main difficulty here
appears to ,e the need to track the front as it develops and folds over on itself. The third
method that has been exploited by Cavendish et al. [4] and Perronnet [5] in structural problems,
Cendes et al. :6] in electromagnetic problems, Wearherill [7], Baker [8,9], Holmes et al. [10]
and George et al. 11] for aerodynamic problems, is the use of the Delaunay triangulation. The
difficulty with this method lies in the requirement to establish the correct triangulation on
any boundary surface and then preserve the surface triangulation while introducing the remaining
flow field points. This can only be achieved by overriding the Delaunay algorithm to prevent
connections which would break through the surface triangulation. George et al. [11] allow the
he launav triangulation of the flow field points to proceed unchecked and then reconfigure the
etrahedra near the surface in order to reconstitute the sarface triangulation. The approach
escribed here uses a getrali;red version of the Delaunav algorithm which restricts the

conrrevctions made near the hod, nurface to ensure that the surface tr ian'ulation remains intact

:it all times.
The next section defines the Delaunav triangulation and outlines Bowyer's algorithm [12].

this is followed bh a discussion of the generalized algorithm for overriding the Delauna-
triangulation near fixed boundaries. Section 4 presents an efficient implementation of the
ilgorithe based on the use of an octree data structure for storing the points that are to be
triangulated. The next section discusses tetrahedron quality and the construction of a mesh
containing mostly well shaped tetrahedra. The final section describes the application of this
triangulation procedure to generate tetrahedral meshes around complete aircraft.

2. DELAUNAY TRIANGULATION AND BOWYER'S ALGORITHM

Definition I

Given a set V n of n points in k-space, the Delaunay triangulation is the unique
triangulation of Vn such that no point Pi c Vn lies inside the clrcumsphere of any k-simplex.

A particularly straightforward method for generating the Delaunay triangulation is Bowyer's
algorithm [12] which can readily be applied to any number of dimensions. It is an incremental
algorithm which directly exploits the above characterization of the Delaunay triangulation as
follows:

Let T, be the Delaunay triangulation of the set of n points V n - fP i l
i -

l. ni. For any
simplex S t Tn . let Rs be the circumradlus and Q. be the circumcenter. Now introduce a new
point Pn+l inside the convex hull of Vn and define

B-ISjS( Tn, d(Pn+ I , Qs) 
< 

Rs)

where d(P,Q) is the Euclidean distance between points P and Q. Now B is non-empty since Pn+l is
inside the convex hull of V. and hence inside some simplex Sir 'lr from which it follows that S'

B. The region C formed when B is removed from T is simply connected, contains Pn+l (since

Pn+l Is Inside S'c B) and Pnfl is visible from all points on the boundary of C. It is therefore
possible to generate a triangulation of the set of points Vn+ I - V n ) lPnll4 I by connecting Pn+l
to all points on the boundary of .C. Furthermore this triangulation is precisely the Delaunay
triangulation T., I. A proof that Bowyer's algorithm is a valid procedure for generating the

[),launav triangulation is presented In references [9,1/]



Definition 2

Let S be a simplex with circlumcenter Qs and circumradius R s . A comparison of the distance

d(P,Qs) between a given point P and Qs will be referred to as the Delauiay test of P for

simplex S. If d(P,Qs) < Rs then we say that P has failed the Delaunay test for simplex S and

that simplex S has been broken by the point P.

Definition 3

Let T be the Delaunay triangulation of a point set V and consider a point P ." V. Let

B=1SJScT. d(P,Qs) < Rs). Thus B is the set of simplexes for which P fails the Delaunay test.

Then the region C created Lv removing B from T is called a cavity.

Deflnit ion 4

Two points A aod B of a graph are visible from one another if it is possible to join A to B
without intersecting an edge.

To implement Bowver's algorithm in three dimensions we start with a super tetrahedron, or

super cube partitioned into five tetrahedra, which contains all the other points. The remaining
points, which comprise the tiesh to be triangulated, are now introduced one at a time and
Bov'cer's algorithm is applied to create the Delaunay triangulation after each point insertion.

It. iF necessary to maintain two lists, easo of length four, for tach tetrahedron in the
existing structure. One list holds the forming points of tile tetrahedron, the other holds the
i!dreses of tile four neighboring tetrahedra which have a common face. The second Il, which

p':ids information about the co,tigities between the tetrahedra, is not strictly necessary
for the implementation ot the algorithm. However, it allows one to find all broken tetrahedra
in a cavity by means of a tree search, once one broken tetrahedrorn has been found. Without this
colitiguitv information, the algorithm would be hopelessly inefficient. It is also convenient to
stote the radius of the crcumsphere and the coordinates of the circumcenter for each

e al"'Ilro1n
The remaining step in Bowyer's algorithm is the requirement to update the data structure.

-etrahedia belonging to the set B are deleted from tile lists and new tetrahedra, obtained by
:oc'ii--rig the new point to all triangular faces of the cavity boundary, are added. Finally it

ecessarc to determine the contiguities that exist among the new tetrahedra and also between

:e now tetrahedra and the old ret rahedra which have faces on the cavity boundary.

Th'-onll float inc point operations required in this algorithm occur in the Delaunay test
: a i retrae hi that is examined when searching for those tetrahedra which make up the

iV,. "wingP to the tiuite precision arithmetic that is used, the Delaunay test will make an
'e cision if the new point falls on the circumsphere of a tetrahedron. It is therefore

-i to xe hirh pr,,cision arithmetic. Moreover it is particularly important, when forming
-t B , r,,k tetrahedra, to exclude from B anly tetrahedron whose circumsphere does not

-1%-', ,,nt,,i tile new poitlt. We therefore introduce a tolerance c'O and include in B only
" ,. ir il.,t S for which d(P,Q,;) < R S  - f, where r is chosen sufficiently large to ensure

.: i, l i l '! 'i,

I (;ENERAI. Z,) AIG;OR 1 TIIM

Ir. r i*-:,r. t .,, nstli, tiil mesh airound a solid object . it proves convenient to
h. triitigulat ion of tihe space inside as well as outside boundary surfaces. The

Iii,,: L tla ioni thi-efo cr ;tarts ly introdlu.cing the farfield points and tile object points. The
tut .iiedra whii-h make ip the interior triangulation of tile object are identified and flagged.
lh- roallaii ing points, which correspond to the flowfield points, are then introduced.

hie.n a flowfield point is introduced very close to the object surface it may fall inside
l, ciriumspheres of one or possibly several interior retrahedra. The procedure that was

Iulopted in reference [9' would reject any such points in order to prevent reconnections which

wlid t;,n.trate the obect surface. This approach has now been replaced by a generalized
Dthla,,l'v; .Ilgolithm whiih allows a partial retriangulation of the cavity, leaving intact any
etlahedra which form the solid object and ar therefore regarded as fixed tetrahedra. Thus, if
hi e l't," 'rea I iy ttlie ilitiodliet ion1 of a new point cl tain.,; ne or moe( of the fixed

e'it aleira .reiloctioris are rtc;tricted to the part of tile cavity that doeis not contain any of
I.e, fixei interior tetrahedra.

For planar triangulations, this procedure always leads to a valid triangulation [17). This
tollow from tile observation that tile removal of one or more triangles from a planar cavity

partitions tile cavity Into disjoint regions. It can then be shown that P is visible from all
ye rices on fhe boundary of restricted cavity in which P lies. In three dimensions the removal

of a tetrahedron, from the tetrahedral complex which forms the Delaunay cav.ty, does not

necessarily divide tire cavity into disjoint regions. There is therefore no guarantee that point
P is .isible from the boundary of the restricted cavity, and it follows that in three space the

reconnection of P to the bounlary of a restricted cavity will not necessarily produce a valid

f liangilatiin
ifowover, we may reasonably expect thlat in many cases all vertices of the restricted cavity

in three space, will be visible from the new point P. If we cat detect tire cases when P is not
visible from every vertex, we can reject those points and generate a triangulation of three

space with the remaining points. Let (Silil1.n be the set of tetrahedra which make up the

restricted cavity. Now let {S1i..l,m be the tetrahedra that are obtained in the retriangulation
by joining the new point P to each of the triangular faces on the boundary of the cavity. The

cavity volume is given by
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n

vol(Si)
i-i

where vol(Si) is the volume of tetrahedron Si . If P is visible from all vertices of the cavity
io that a proper retriangulation is formed, then the volume is also given by

m
Svol(SJ)

j-l

If P is not visible from all vertices of the cavity then one or more of the

Sj will intersect non-cavity tetrahedra. In this case

n m2 vol(Si) < 2 vol(Sj)

i-i j-1

It is important to note that the volume of each tetrahedron is found as a by-product in the
computation of the circumcenter coordinates. The application of this particular test is
therefore computationally inexpensive.

If point P is found to be not visible from all vertices of the cavity then the cavity size
is further reduced by excluding more tetrahedra and re-testing to determine whether P is now
visible from the vertices of the reduced cavity. This procedure is facilitated by the ordering
of the cavity tetrahedra. We first find the tetrahedron that contains the point P. From this
tetrahedron we search outward looking at its neighbors and retaining those tetrahedra which
belong to the cavity. This forms the second layer; the third layer consists of the neighbors of
the second layer which belong to the cavity and have not already appeared in the list. This
process continues until the tree search terminates and. we have found all cavity tetrahedra.

If P is not visible from all cavity vertices we remove the outermost layer and re-test for
visibilitv. If we continue removing layers we must eventually reach a stage where P is visible
from all vertices of the reduced cavity, since the first layer consists of the tetrahedron
containing P and the vertices of this tetrahedron are certainly visible from P.

4. ALGORITHM EFFICIENCY

'When a new point is inserted, a search is made through the list of tetrahedra to find the
first tetrahedron that fails the Delaunay test. The remaining tetrahedra which make up the
cavity can be found by a tree search. After these tetrahedra have been removed, the points on
the houndarv of the cavitv are connected to the new point P and the new tetrahedra thus formed
ire added to the data s ti ,.rc.

The t ime required to triangulate N points will be given by

N
T - (Tk + T )

k

Here, Tk is the time taken to search for the first tetrahedron broken by the introduction

of the kth point into the triangulation of k-I points. T is the time taken to

find all remaining tetrahedra in the cavity and construct the new triangulation. The time
T' will be pruportional to the number of tetrahedra in the cavity. If the points are inserted

in a widely distributed mariner corresponding to a coarse sprinkling followed by a finer
distribution [9). the cavity size and hence time TL should be roughly independent of k. The
majority of points are flowfleld points which are introduced first as a coarse lattice for the
farfield followed bv a finer lattice of midfield points and so on. The time T can therefore be

regarded1 as 0(1)
The time complexity of the algorithm is therefore dominated by the search time Tk. In

general, the list of tetrahedra will be randomly ordered and, in the worst case, Tk will be 0(k)
leading to an overall time complexity for the triangulation that is O(N

2
). In reference [9) it

is shown that this can be improved to O(N4
/

3
) by starting the search with the most recently

created tetrahedra. However, this requires the points to be inserted ill a series of forward and
backward sweeps which presumes a well defined ordering.

It is therefore necessary to introduce a data structure whien allows an efficient search
for tile first tetrahedron which fails the Delaunay test irrespective of the point ordering. To
achieve this, an octree structure has been exploited to store the points that have previously
been inserted. Octree (in two dimensions quadtree) data structures have been used in a variety
of contexts [1,13,14] More recently, L'ohner [3,15] has adopted this data structure to produce
efficient search procedures for his unstructured mesh generator based on the moving front
technique.

A quadtree structure for a planar point set is illustrated in Figure 1. The terminal quads
are those which contain no more than four points. When a fifth point falls Inside a quad, this
quad is divided into four daughter quads and each of the five points is re-assigned to one of
the daughters. Each quad is associated with a list whose first four entries hold the addresses
of the points it contains in the case of a terminal quad, and the addresses of the daughter
quads for a quad which is not terminal. In Figure 1, quads 1 and 5 are parent quads and
therefore hold the addresses of their daughters. The remaining quads are terminal and therefore
have the addresses of their points, indicated by the letters A through K. In this way, a tree
structure is built up which makes it possible to determine quickly the location of any point in
the data structure. The list associated with each quad has three further entries which hold
such information as the address ,.f the present quad's parent, its position in the parent quad
and tile number of points it contains. In three dimensions, the quad is replaced by a cube which
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is split into eight octants. In this case, the list associated with each octree has length
eleven of which the first eight entries contain the addresses either of its daughters or, for a
terminal octree, the addresses of the points it contains.

In the Delaunay algorithm, the octree data structure is exploited to find the point nearest
to a newly introduced point. With each previously introduced point one associates a tetrahedron
which has this point as a vertex. The search for the first broken tetrahedron thus starts with
the tetrahedron associated with the point nearest to the new point and proceeds to examine all
neighboring tetrahedra which have this nearest point as a vertex. The octree search to find the
nearest point is accomplished in O(log k) time. The remaining search to find a broken
tetrahedron takes O() time. In this way, it is possible to find the first broken tetrahedron
in a time Tk which is O(log k), It follows that the overall time complexity of the algorithm
0(N log N).

5. QUALITY OF TETRAHEDRAL ELEENTS

It is well known, from finite element theory, that badly shaped elements can lead to
Inaccurate and unstable approximations [18 1. It is therefore important to observe geometric
constraints on the shape of element that is allowed. For exauple, a planar triangulation is
usually required to satisfy the minimum angle condition, although this has been shown to be too
restrictive and can be replaced by a condition which limits the maximum allowable angle [19].
The minimum angle condition, however, can be reformulated as a requirement that the in-circle
should not be too small, and this condition can be readily extended to higher dimensions.

In two dimensions we associate with each triangular element the linear shape functions
Oi(x,y), i - 1,2,3 such that 01 takes the value one at the vertex Pi and zero at the other two
vertices. A function u(x,y) which takes the value ui - u(xi,y i) at the nodes I - 1,2,3 can be
approximated by the linear Interpolant

3
u (x,Y) - uii(x,y)

i-I

If we define the Interpolation error - u - u, it can be shown [18] that for u sufficiently
smooth the maximum error satisfies

IeI CoH 2 max I
Iml-2
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wheeyD,- mj - a + , and H is the maximum edge length. A corresponding estimate of

axa~

the form

jDri CIH max IDmul

is obtained for the derivative of the interpolant provided the derivatives of the shape
functions satisfy

C
max [D~i[  , i - 1,2,3

This is known as the uniformity condition and for a planar triangulation is satisfied provided
that all angles in the triangulation exceed some lower bound as H-' 0 118].

Let hi be the length of the edge opposite vertex Pi, let H - max lhl, h2 , h3 ) and r be the
radius of the inscribed circle. It can be shown [201 that the uniformity condition implies that

H- - O(1)

r

Now let R be the circumradius of the triangular element and let h - min {hl, h2 , h3 ). We define
three geometric parameters which allow us to characterize well-shaped and badly-shaped
triangles:-

H R H
a- - , I-- r

r H h

The uniformity condition implies that a triangle is badly shaped if o>>l. There are two
distinct types of bad triangle for which o>>l. Either w - 0(0) and r>>l which corresponds to an
acute angled triangle (the angle opposite side h is very small); or otherwise w>>l which occurs
if the triangle is obtuse and the angle opposite edge H is close to 180 degrees.

We now postulate that the points are distributed so that the distance between neighboring
points changes slowly, and that within any small region the point distribution is almost
uniform. Since the circumcircles of the Delaunay triangles can contain no other points, it
follows from the uniform point distribution hypothesis that w - 0(1) thus precluding the
formation of obtuse triangles. The same conditions also imply that all triangles will have
T - 0(1). Thus the combination of a smooth point distribution and the Delaunay triangulation
ensures that only well-shaped triangles are formed.

In three dimensions, it can be shown [20] that the uniformity condition again requires
o - 0(i). If we now consider the degenerate tetrahedra with o>>i, we find three distinct
types:-

Type (i) r 1 1, w - 0(1)
Type (ii) w I 1
Type (iii) - 0(1)

Type (i) corresponds to the highly acute triangle in the planar case; type (ii) occurs if one or
more of the tetrahedral faces is highly obtuse. Type (iii) is known as a sliver 14] and is
formed by four almost coplanar points.

The requirement that the points be smoothly distributed excludes the possibility of forming
type (I) and type (ii) tetrahedra. However, type (iii) tetrahedra may arise and must be
detert-j and eliminated. This can be achieved in a straightfoward manner by inserting a new
poiit inside the circumsphere of the sliver and allowing the Delaunay algorithm to create a
triingulation containing the new point.

Since the sliver is formed from four nearly coplanar points, we can determine a direction
that is approximately normal to the plane on which the sliver lies by taking the vector product
of a pair of opposite edges (ie. edges which do not have a common vertex). There are three
pairs of opposite edges and it is possible that one or two of the pairs are composed of two
nearly parallel edges. We therefore calculate the vector product for the three pairs and take
the product with the maximum magnitude. Suppose this

axbproduct s _ x h where g and b are opposite edges. The vector 2 - T1- is a unit vector normal

to a and b and hence approximately normal to the plane on which the sliver lies. Let xc be the
circumcenter for the sliver and define a new point by

2c - 4c + 8 p

where 181 < 1. This restriction on 0 is necessary to ensure that the point lies inside the
sliver's circumsphere thus producing a retriangulation in which the sliver is eliminated. In
most cases we also find that the circumcenter 2c will lie near to the sliver and so 0 should not
be too close to zero.

In practice relatively few slivers occur and the procedure described here succeeds in
removing these bad tetrahedra. The resulting mesh is therefore composed of good quality
tetrahedra which all satisfy the uniformity condition.

The distribution of points should reflect the need to r,solve rapid flow variations near
the aircraft surface which requires a high density of points in that region. On the other hand,
the requirement that the points be smoothly distributed prohibits any rapid change in point
density.

The points outside the body are organized into a collection of several sets, arranged in
order of increasing density or refinement. The first set is composed of a very coarse lattice
extending about twenty body lengths away from the body In all directions. The next two sets are
made up of points forming denser lattices throughout the same region. The fourth set extends



Fig. 2 Surface Trian~lilation on the Lockheed S3A
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about ten body lengths away from the body in all directions with the spacing between adjacent
points one half that of the underlying lattice from the third set. The remaining sets follow
this trend of covering a region closer to the body and halving the spacing between points until
the point spacing is about one percent of the body length. The final set comprises a shell
determined by placing a few points along a normal to each surface point.

In this way, it is possible to generate well-shaped tetrahedra throughout most of the
flowfield. Difficulties occur near the body surface, however, since the surface points are not
smoothly distributed. This is particularly apparent in areas of high curvature such as wing
leading edges. The points must be closely spaced to accommodate the high curvature at a wing
leading edge but need not be closely spaced in the spanwise direction. In this case, needle-
like type (i) tetrahedra for which r>>l must inevitably be formed in the vicinity of the body
surface.

The generalized Delaunay algorithm which permits points to be triangulated close to the
body surface will also allow type (ii) tetrahedra to be formed. It is therefore necessary to

monitor the tetrahedra which are generated and reject any point whose insertion would result in
a tetrahedron with a large circumradius. In effect, this procedure disallows any tetrahedron
whose minimum altitude is much less than its maximum edge length.

The resulting mesh is mainly composed of well-shaped, nearly regular tetrahedra. Near the
body surface, however, the quality of the tetrahedra depends on the distribution of surface
points. In particular, where regions of high curvature dictate a surface distribution of
unevenly spaced points, we can expect needle-like tetrahedra to be formed. The extent to which
the quality of the flow solution is adversely affected by the presence of thin tetrahedra
requires further investigation.

6. MESHES FOR COMPLETE AIRCRAFT

The constrained Delaunay algorithm provides a robust method for generating tetrahedral
meshes around and inside complex three dimensional objects. A mesh generator based on the
principles described above has been linked to an Euler flow solver [8,16] in order to calculate
inviscid transonic flow over complete aircraft.

The mesh points which define the aircraft surface, together with the set of automatically
generated internal points, are triangulated first. At this stage, it is necessary to determine
which tetrahedra comprise the aircraft structure. One now has the option of stopping the
procedure and examining the surface triangulation, or allowing the triangulation of all
remaining points to be carried out. The triangulation rate is about 5000 points per minute on a
Cray 2. Thus a typical mesh containing about 200,000 points for the space around half the
aircraft will be triangulated in approximately 40 minutes. The number of surface points
typically ranges from about 5,000 to 10,000 depending on the complexity of the aircraft, with an
equal number of internal points. It follows that the time required to triangulate all the
aircraft points (surface points plus internal points) varies between two and four minutes on
Cray 2. The examples presented in Figures 2,3 and 4 show the surface triangulation over three
different aircraft and thus demonstrate the scope and versatility of this method. Figure 2 show
the Lockheed S3A with approximately 5000 points on half the aircraft surface. The flowfield
region that is triangulated includes the duct inside the nacelles, thus allowing a calculation
of the flow through the nacelles as well as the flow around the rest of the aircraft. A more
complex shape is the McDonnell-Douglas FI5 shown in Figure 3. This aircraft is defined by about
8000 surface points for half the aircraft. Again the complete mesh includes the region inside
the duct running from the intake through the aircraft to the nozzle at the rear. Although
difficult to discern from Figure 3, the engine intake is separated from the fuselage thus
correctly modeling the intake bleed. Note also the presence of the snag on the horizontal tail
where there is a deliberate discontinuity in the leading edge.

Figures 4 show the surface triangulation around the Boeing 747-200. This example has two
engine nacelles on each half of the aircraft and each nacelle has both an outer cowl and an
inner primary. The detail in this region is apparent from Figure 4, and the complete
triangulation includes the space through and around the entire nacelle assembly. Flow
calculations have been run assuming flow-thro'4gh conditions. There would be no difficulty,
however, in modifying the flow solver to accommodate a powered nacelle boundary condition.

In order to generate a mesh around a new aircraft geometry one needs a detailed surface
definition. Typically this would be supplied in the form of a series of patches or sections for
each component of the aircraft. It is importai,L to display the surface triangulation on a
graphics terminal in order to decide whether the distribution of surface points is adequate and
whether the surface triangulation is satisfactory. It is, in fact, usually necessary to
interpolate some extra sections of points in various critical regions in order to obtain
sufficient resolution of every geometric detail. When one is satisfied with the surface
definition, the triangulation of the remaining flowfield points proceeds completely
automatically.

Mesh generation of complete aircraft flowfields is thus accomplished with minimal user
intervention, and as the examples indicate, it is possible to treat aircraft shapes of
essentially arbitrary complexity.
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Fig. 3 Surface Triangulation on the McDonnell Douglas F-15
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Fig. 4 Surface Triangulation on the Boeing 747-200
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ABSTRACT

In this paper we describe a numerical method which uses a rectangular grid to solve the nonlinear full
potential equation about complex configurations. The grid is locally refined to resolve high velocity
gradients arising from leading edge expansions or shock waves. The grid penetrates the boundary
(described by networks of quadrilateral panels) and is generated automatically. Discrete operators
are constructed using the finite element method. The system of nonlinear discrete equations is solved
iteratively using a Krylov subspace method preconditioned by an exterior Poisson solver and a direct
sparse solver. The primary emphasis of this work is to provide design engineers with an aerody-
namic analysis tool (the TRANAIR code) which is accurate, reliable, econonical, and flexible to use.
Computational results for many interesting configurations are presented.

INTRODUCTION

Many aerodynamic designs are geometrically complex. Conuercial aircraft, for examole. have na-
celles, stabilizers. slats, flaFp and ailerons, in addition to wings and fuselages. The geometry of typical
military aircraft can be even more complex. The flow about these configurations may include shock
waves, engine power effects, and very stiung 'cading edge expansions. To aid in the design of such
complex configurations the engineering community needs computational tools which can solve the
associated boundary value problems on unbounded domains with many types of boundary conditions.
If such tools are to be used effectively in a design project, the underlying numerical methods have to
be accurate, reliable, efficient, and flexible

In three space dimensions. panel methods (boundary integral methods) have provided the desired
degree of ,tficiency and geometry flexibility [1]. For the last twenty years full aircraft configurations
have been routinely analyzed using panel methods. Panel method users have taken for granted the
ability to add, move, or delete components at will, readily select and change boundary condition types,
and obtain accurate solutions at reasonable cost in reasonable time. The primary drawback of panel
methods is their limitation to linear subsonic or supersonic flows.

Unfortunately, many current aircraft fly at high speeds where a substantial portion of the flow is
transonic. Transonic flow exhibits nonlinear behavior and requires computations in the volune exterior
to the configuration surface. Many methods in aerodynamics have used body fitted structured or block
structured grids that allow each grid cell to be treated in a similar fashion with minimal storage [2].
This, however, introduces the subsidiary problem of generating a body conforming grid. A second
approach that allows arbitrary grid refinement is to use tetrahedral cells [3]. This approach also
requires the generation of a body conforming mesh. A third approach uses rectangular grids with
special operators near the boundary [4, 5]. We have chosen to use the rectangular grid approach for
the reasons that are outlined below.

First, rectangular grids are easy to generate and use. One can start with a suitable uniform global

grid and locally refine the rectangular cells in a hierarchical manner. Local refinement may be con-
trolled eternally by the user or adapted to the solution. Oct-tree data structures can be used to
efficient'- store and extract all the information related to the grid [6, 7]. Second, the rectangular grid
approach lends itself to efficient use of the computing resources. Since the local refinement is hierarchi-
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t Boeing Computer Services
Boeing Advanced Systerm
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cal, all cells away from the boundary are geometrically similar, and the discrete operators for all these

cells are identical up to a multiplication factor and require practically no storage. On the other hand,
the ope rators for irregularly shaped cells near the boundary, which can be constructed using the finite

element method, must be stored. However, this is not a major problem since the number of such cells

is usually small compared to the total number of cells in the grid. It is also possible to take advantage

of the rectangular grid in designing efficient algorithms that calculate residuals, the finite element

stiffness matrix, etc.. Third, the rectangular cells are numerically far less ill-conditioned and allow the

application of powerful preconditioners to ensure convergence. They allow an implicit extension of the

finite computational region to infinity through the use of an exterior Green's function. This greatly

reduces the number of cells needed to solve a given problem. And, finally, the requirement to generate
a body fitted grid is eliminated since rectangular grids are independent of the boundary description.

The engineering users of the computational tool have to provide only the boundary description to the
code which significantly enhances the usability of the code.

We have developed and implemented a numerical method based on the rectangular grid approach

in a computer code called TRANAIR. It solves the full potential equation with regions of differing
total pressure, temperature, and swirl. TRANAIR has been developed to replace panel codes as a
workhorse aerodynamics analysis tool for full configuration design. In order to accomplish this goal a
wide variety of numerical algorithms have been combined.

In the following sections we will discuss these algorithms with particular emphasis on the grid.

We will then discuss a number of applications of TRANAIR to aerodynamiic analyses of complex
configurations. This is followed by concluding remarks.

DESCRIPTION OF THE METHOD

In this section we describe the numerical method. First, we define the continuous problem to be
solved. Then we describe the grid and boundary specification, and finally, the construction of the
discrete operator system and its iterative solution. More details on discretization and the solution
techniques may be found elsewhere [8].

Problem Definition

We solve the full potential equation given by

C(() -_ V. PVb = 0 (1)

where the density and pressure are given by isentropic formulas

P = P)" [i + - .w (I - I + ml 2 (1 - ))(2)p~X, 1+_ X,,1

Here. 1 is the total velocity potential to be determined, q 11 I D 5112 is the speed, Al is the Mach
number, - is the ratio of specific heats, and subscript x denotes a value at a far upstream location.

The far field condition is that the perturbation potential 0 = D - (5, = 0(-). The normal flow
boundary condition is p0 = h where h is zero for impermeability or may be specified on other surfaces,
such as engine inlets. We may impose the Dirichlet condition, D = g, on an engine exhaust surface,
where tangential flow can be prohibited by specifying g to be a constant. The boundary conditions on

wakes represent. conservation of mass and normal momentum across the wake, i.e., fi . A(pv7 ) = 0,
and Ap = 0 where A represents the jump across the wake surface.

The boundary value problem described above can be cast in a variational form for the purpose of
applying the finite element method of solution. The principle we use is a generalization of the Bateman

principle [9). Specifically, the functional required to be st.ationary ;- cv;vn Iw

p I+ d - (pL4)A4 - pP) 2dS + p-(5- g) - -L( 5 - g)'dS (3)
= p d+---- 2A1 - n 2AI

where a denotes the average across the surface, and the wake strength ji is determined from Ap = 0.

A modification of the above formulation allows the simulation of flows involving regions of differing
total temperature and pressure. The potential flow exists in each separate region as long as total
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temperature and pressure are constant in each region. Hence to model such regions only pressure and
density in those regions have to be redefined in the following way:

7T1 

2

P P[, J,. -Y-"A2(I - q) p =-, poor P l+ 1 M2 (1 _ q (4)

Here, rp and rT are the ratios of the total pressure and total temperature in the region to their
corresponding freestream values.

Surface Geometry and Grid Specification

The boundary surfaces are prescribed via networks of panels. This input format allows relatively easy
specification of complicated boundaries. In TRANAIR, it is identical to the input format of a panel
method code that is extensively uscd for linear flow analysis [1].

The surface networks are embedded in a rectangular grid that is confined to a finite rectangular
computational region. The restriction of the grid to a compact rcgion is justified through a source
transformation. The argument goes as follows. Suppose that the partial differential operator C is
well approximated by a constant coefficient differential operator T in the far field. Then the original
differential equation &D = 0 is equivalent to

Q+ (C- T)C *Q = 0. (5)

where (; is ithe Green's function for T such that T(G*Q) = Q for all ) and (I = C*Q satisfies the proper
far field condition. If wc use the sources Q as unknowns then we can restrict our computation to that
region where Q is nonzero. We note that for most problems of interest Q approaches zero at oc much
faster than ,D approaches (1,. Hence it is possible to find a finite computational region outside which
the approximation Q - 0 holds very well. For a wing in transonic flow the computational region needs
to extend only one or two chord lengths away. The same argument liolds for the discrete problem.
For the full potential equation the Prandtl-Glauert operator nnay be taken as T. Construction of a
discrete Green's function for the Prandtl Glauert operator that satisfies the proper far field boundary
condition is facilitated 1 the use of rectangular grids [5. 10, 11].

For a given rectangular computational region the process of constructing tile volume grid is auto-
matic and is described below. First. thc rectangular finite computational region (which extends far
enough to include all boundaries and regions where the flow is expected to be nonlinear) is refined
into a uniform grid called the global grid. The global grid is independent of tie boundary surfaces
and its density has to be sufficient so that the discrete Green's function is able to resolve the far field
ad(qIately.

The global grid is refined, where necessary, in a hierarchical manner, i.e.. selected grid boxes are cut
into eight equal geometrically sinilar boxes. This process is repeated to give a grid with any desired
local resolution. The final refineme nt p~attern which is optimally suited to obtain a solution is rarely
known a priori. Hence certain guidance is required to perform refinement. A good working strategy
is one in which such guidance is provided initially by the user ,-'sed on his knowledge of the problem
and later derived from the solution itself (as it evolves iteratively. In other words, a good guess to the
initial grid is obtained by using criteria provided by the user (see bel,. w) and that grid is subsequently
refined (or derefined) depending on the magnitude of the solution errors. (Currently the grids are
obtained based oil user provided inputs while we are implementing solution adaptivity into the code.)

Tile initial refinement can be controlled by the user by specifying two criteria. The first criterion
is based on the leontli scale of the surface panels used to describe the boundary. Every box that is
sufficiently close to a panel is refined if some weighted length scale associated with the panel is smaller
than the length scale associated with that box. This criterion is effective in providing denser local
grid near certain parts of the bomndary if it is known that the solution has strong gradients there.
The second criterion allows refinement away from boundary surfaces. Special "regions of interest or
disinterest" can be prescribed each with de.Nired minimum and maximum refinement levels. All the
boxes in a special region are refined recursively until the minimum level is reached. Further refinement
depends on the first criterion. This criterion is usefil, for example, for problems in which shock waves
exist. The special regions are hexahedral (very easy to input) and provide a fair amount of flexibility
in generating off-surface refinement.
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To adapt the refinement to the solution, an error indicator can be calculated for every box in
the grid. This indicator can be adjusted based on the user provided information (regions of interest
or disinterest) and used in either refining or derefining the grid. We note that we are currently
implementing adaptive refinement in the code. We expect that this will significantly increase the
reliability and efficiency of the code.

To take advantage of the hierarchical nature of the refinement and geometric similarity of the boxes
we have developed a compact data structure based on an oct-tree [6, 7]. The oct-tree data structure
we use is based on boxes. At the beginning of the oct-tree array certain overhead information that
describes the size of the grid is stored. This is followed by two blocks of data, each as long as the size
of the global grid, describing its refinement. Then follow the branch data elements of the tree which
describe the hierarchical refinement and constitute the bulk of the the oct-tree. A typical branch data
element in an oct-tree is illustrated in Figure 1. The first word in a branch data element points to
the father box, the next eight words point to the refinement branches of the sons, if any, and the last
word contains an accumulation index specifying the number of nodes encountered up to that point
in the oct-tree. A null pointer (value zero) in a son entry of any branch data element represents an
unrefined box.

Even though the oct-tree data structure described above is able to describe any collection of hier-

Pointer Pointers to Son Accumulation
to Father Refinements Index

/ 3rd Son's Refinemeht

@ 11 I I I I I 11HIIII]t

Figure 1: Oct-tree Data Structure Element.

archicallv refined grid boxes, it is convenient to restrict the refinement pattern. We require that no
two face or edge neighbors in a --legal" refined grid differ by more than one level (see Figure 2). This
rule prevents pathologically large stencils (see Figure 2), that otherwise might occur under certain
circumstances. but allows refinement down to an arbitrary level within one adjacent coarse grid box.

We have extended the oct-tree data structure to accommodate nodal and boundary information.
The index of a box is assigned to the node at its lower-left-near corner. In order to ensure that all
nodes at refinement interfaces are accounted for, we perform pseudo-refinement (see Figure 2). Boxes
added by the t)seudo-refinement are used only to identify nodes and do not introduce extra degrees of
freedom. This allows is to keep track of nodes as well as boxes using the sane oct-tree with only a
modest increase in storage. Any unrefinedl box cut by a boundary is identified with a negative number
(equal to its index in a list of such boxes) placed in the son entry of a branch data element. This is a
,onvenient and compact way of accounting for the presence of the boundary.

The data structure allows efficient extraction of a variety of information, such as the location of
nodes and box centroids, box size, box refinement level, node indices, box adjacency and identity
of boxes intersecting the boundary. The location of a node or a centroid of an unrefined box can be
calculated by climiT, :p to the ancestor in the global grid and then using the global box information.

Pseudo Illegal Cascading
Refinement

Refinement .............. .... Stencil for
to Identify this Node
this Node___

Legal
Refinement

Figure 2: Some Issues in Hierarchical Refinement.
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Adjacency (box-to-box connectivity) information can be obtained by starting at a box and climbing
up the oct-tree to the root of the branch that includes that box and climbing down a complementary
path to the neighboring box. Asymptotically this data structure requires storge equal to 10/7 the
number of unrefined boxes for the box information. However, when the nodal information is added, the
factor is closer to two for those cases where a substantial number of boxes have neighbor of different
refinement level.

Discretization

The finite element method is used to discretize the partial differential operator. On each box a standard
piecewise trilinear solution. parameterized by eight unknowns located at the corners, is defined, see
Figure 3a. Element stiffness matrices are generated 1 taking variations of the functional J in Equation
(3) with respect to each degree of freedom. For a standard box not cut by a boundary we may write
the variation as

l;= iow T pV - V61dV (6)

In evaluating the integral the density is taken as a constant over the box with the value of density
evaluated at the centroid. Since the boxes are obtained by hierarchical refinement, every standard
(off-boundary) box has the same element stiffness matrix up to a constant factor that depends only on
the refinement level of the box and the density at the centroid of that box. Only one stiffness matrix
must be stored for all the boxes not cut by the boundary. This can be exploited to reduce the storage
requirements ,drastically.

a) Standard Box b) Boundary Box

Z (D)7 I)5 D7 d

(D5 4 D Region

Boundary

- '1)I'4 I

Figure 3: Box Finite Element with Eight Corner Unknowns.

For the boxes cut by the boundary the element stiffness matrices are derived from Equation (3)
which includes appropriate surface integral terms. The dtomain of volume integration, referred to as a
D region. is any connected flow region in the box, see Figure 31). The domain for the surface integrals
is the part of the boundary cut by the box. The trilinear approximation function for boxes cut by the
boundary is defined in the same manner as described above except that the corner unknowns on the
other side of a boundary surface can be viewed as extrapolated values, denoted in Figure 3b by T.
For complex geometries, the D regions can take any' shape, and the integration ivolved in computing
the stiffness matrix appears to be a formidable task at first sight. But the integrands are polynomials
so that Gauss' and Stokes' theorems and simple one dimensional integration formulas can be used to
systeinaticdy ceduce these integrals to point evaluations at vertices of the bounding surfaces. It is
possible to have more than one D region and consequently more than one approximation function in a
given rectangular box and more than one unknown at some of its nodes. Each D region has a distinct
element stiffness matrix which must be stored. However, these regions represent typically only 10 to
20X of the total regions needed to give an accurate solution of the boundary value problem. Hence,
the storage require(d is acceptable.

In order to maintain conservation of mass across the grid interfaces one must maintain the continuity
of basis functions used in the finite element method. This is achieved through introduction of pseudo-
unknowns which lie on the edges and faces of boxes with finer neighbors. The value of a given
pseudo-unknown is forced to be the average of its parents located at the endpoints of the edge or the
corners of the face on the coarser neighbor.



Standard first order upwinding of the density is used to produce the artificial dissipation required
when supersonic flow is present [12]:

p~p-~ Al il V tp where C 1 M M. (7)

Here it is the switching function, 11, is the cutoff TMach number. Al is an elemental length associated
with the( cell, c, is the unit velocity vector, and the dlensity gradient is upwinded.

Solution Techniques

Since the discrete system thus generated1 is generally large, nonsymmetric, nonlinear and often poorly
conditioned, we have chosen the Krylov subspace method GMRES [13] as the basic iterative solver.
GMHRES is only effective, however, when it is preconditioned appropriatel ' to produce a favorable
(listribution of eigenvalues. Denoting the solution unknown symbolically by V let thle dliscrete system
to be solved lbe

L(t) = f (8)

Standard left preconditioning is the application of GMRES to N-'L(k) = 'f where N-' is the
preconditioner. Standard right preconditioning is the application of GNMRES to LT-1 (Q) = f where
Q = Tx,.

We have found that a combination of right and left preconditioning works best for the types of
prohlems beiing considlered here. We utse a combination

vTN-'LT-'Q = i'TV'f (9)

whoe v' is a cutoiff imposedl at the outer boundlary of the( computational region. Here T 1, the
ci ~ wil tit- Gi ~Creen's fuinct ion for the( discrete Prandt I-Clariert operator defined on ie( ,Ilbal

grit. For ttIer unknowns, this operator is, slimlY thle idlentity. This precotutit ioner is etrml
efi ilvt f,) itihlic regions anid ensures thiat lie far fieldl boundary' condlition is, satisfied. The left

potiioit oiicr XY-1 Is chosen to be an approximiate Inverse of the( glob~al stiffniess rim trix restrlct ei to
a (r I ore conitaining th ut-lnknowns near t ie( botindar 'v and 'in the( silporsotlic regions,. e ol tin

A, bYit diect parseincoplet e fact or izat ion of N. To in ali dilrect docot inpositIin feas lel fo r larlge
proi 1 ItlnIs We lit ri)(drice a dIma ynic dtrop P d'ran cc iii! nested d(i ssect ion ordctrm g for tie( ii n k n ow s.

TIt(- siiialI (eliiwit, s ( ilow a spoified drop tolerance() in thle itecoiposit ion are droppedl as ierc are
eiritt.Tl' Iliai aI cas'cadliig effect and14 dramat iilcillv reiltices fill [1-I] A !r)i liseil nested diss-,ectionl

i liig reditt ., t Ile fill 11i1-1nt-" Cliltiiiiat 10iii.

T) lhandle noiliieiies we embed GMPES in ant approximnate Newtoni ntlioil wit Ii GNIPES
dIriving a linearii'e(i operator obtained hr finite iliflerencing the, nionlinear operator. A Newton n1ettiod
is rirelrgloall cqnvergent if thle iniitial soltution Is taken to he o 0. wliicli is usually not at good
appirixiiniit ion ti the( soilon. Therefore, a Newt on meothod generallY munst Ile ilampotd. (,p c -;ill for

%Ve illil) the( Newton meot hod bY controlling tie( amiount and thet ext ent oif thle region of artificial
dlip~~iit jill. Higher dissipat ion ( higher vadles of /I in Eqjuation (7)) is appiliedl over a larger regioni
lowe-r v-ales of 1!, [in Equation (7)) dutring the( init ial Newton steps so that stilersiinic zones anid

shock lmitins are locatted fairlY early in thle process, even tligli t ie shuocks atre rite smeariied.
After at few Newt on steps, hoth i tli amlount of ulissipa t ion and tie( ex\tent over whiich it is aippliedl are
reIi iced to appropriat e levels.

Ani alte-rnaite meothod of aiding tite Newton iteration is to rise at sequeince of coartse to fine grids.
The( soluition (in aI coarse grid is Interpolated to provide the( initial guess for the( next finter grid. This
procedure hias thte samie effect as using large artificial dissipation (higher valtie of A/ in Eqltat ion (7))
mu jiallY aind decreasinig it in t lie si bseqInent grids. Tite shiocks are smeared in the coarser grids htt
are, closer tio thI -Ir actuiial l ct IonIt.

RESULTS

In t his sect ion we present somne restilts obltainedt hbv applying the( TflANAIR code to nmnyv practical
prcihletns of itcrest. Tli ile )1 runs on tw l ie v Xa N-N\IP or t I Ie ('ray Y-NIP mnacliines wit I)ian SSD but
aill t ie( resuilts shiown liere are obtainied onl tie( (ray~ N-NIP. Ne ,lo resent resuilts for thle ()NEP A MG
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wing, the F16 fighter configuration with and without tanks and missiles, and several transport aircraft
configurations with nacelles, struts, tip fectthers, and installed powered nacelles. These cases have been
analyzed with up to 320,000 grid boxes and involve sparse matrix decompositions of matrices with up
to 200,000 unknowns. The solutions, ,onverged to 6-8 digits accuracy, are typically obtained in run
times of about 1-2 hours.

A standard aerodynamic test case is the ONERA M6 wing at A1, = 0.84 and a = 3.06(. The
TRANAIt results are compared to those obtained using FL028 [2]. Dense grids (TRANAIR grid
with 311.000 boxes and FL028 grid with 364,000 cells) were used in both codes to capture the oblique
(supersonic to supersonic) shock accurately. In Figure 4, we show two cuts through the TRANAIR
grid. In Figure 5 we compare surface pressures at four span stations. The TRANAIR solution agrees
quite well with the FL028 solution using first order dissipation. In this problem, both codes used
grid sequencing and obtained comparable accuracy (seven digits) at comparable cost (approximately
an hour and a half).
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Next we prsent the results for the FIG lighter configiration. shown in Figure 6 with and without
the tank aid missile. The FIG without the tank and missile was analvzul, ai t1[. = 0.9 and ,) = -1.00.
The (omptitar ismal grid h;d 189.000 boxes. A comparison of computed surface pressure with wind
tunnel data at two wing stadti,,ns is shown in Figure' 7. The agreement lietween computed resilts and
t et lata is good. For the FIG with tank ani missile. Figure 8 shows tw( plane cut through the
coin ulitatioial grid. which has abomt 21. !ti) boxes. Figure 9 compares computed smface pressire
(at .A1, = 0.9 anl (I 4.0" jUst inboardld n!t titinard of the tank strut with those for the F1G
without tnls and missiles. The qialirayive ,ltect if le tank is to speed up the flowl ulndorving and
is, I~rish i,'ti, will.

Ts- n,.xt ,ase i, ; 717-200 trnspori ,.snliy'uar in with win,, lm,,,l. struls ;u!,d nacelles. The
e.,t itv ,l--risltiii, illihs alum 23.0001 pailis (see) iguri l1t and ;s uuich biggr than which can
I,. h;ils l )eu b ;anel ides. Th lthw atal;sis was p,.rfmi, ,,1 iat ,i = 2.7" a -n AI, = 0.,. This is

;ippstrixilitt sly th,. li;hrv'est froo.st roaim 1ai numbe'r at which an invisisd -,)lver can t);lI reasmab)le
r.uult, with(,msui itlarv layer (uipling. The grid ursd fsr this liroblem cmsuisted 4 i aq)prxinmatcly
21 9.10( Iboxs . Figir' II shows a (lit thirough the grid. Figure 12 compares cillite prs-ssti-e with
wind tuntiel dutassuire data at four slpin statims of the wing. Overall. one secs v(r]'y gi)l agreonwt
with (xpriiieiit. Most iif the differences lre sain in the tipper sirface presstires and are artrihutable
tO VisCits effecls 10 i( currently modeled in TRI)ANAIR . On tHie lower surface one cain early see (in
Figure 12) the el(cit (?f thi' outiiird nacelle atl the 69/ spatn statl isl. Nial" t he leading edge of the
wing at th, same span station the TRANAII solution inlicates a slipers(uic tii stpersolnic shock, also
eviden.1ft ill ths ,.xle rii.ui l ilata.

Tho next case we present is a transport aircraft wit h tip feathers. The paneling for the configuration
is shown in Figiure l3a. This configuration is a good example of where the length scales associated
with ,lifferent cotimponents are vast lv different. Typical grid sol ionls are sliwn ill Figuire 1:1). We nte
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Figure 6: F16 Aircraft Configuration with and without Tank/Missile.

that the finest grid box is seven levels below the biggest box (with volume ratio of approximately 2
million). The flow solution obtained at MJ = 0.8 and a = 1.60 is shown in Figure 13c. At this Mach
number and angle of attack the shock on the forward feather is too far aft which can be attributed to
lack of boundary layer modeling in TRANAIR.

Finally, we present analysis of a transport aircraft with installed powered nacelles. The plumes
behind the nacelle are simulated as regions of different total pressure and temperature. In Figure
14a and 14b, we show the paneling for the configuration and a typical section of the grid with about
230,000 boxes. In Figure 14c and 14d we compare the pressure computed at an underwing station
and inboard strut station with and without power (flight idle (ram) and cruise conditions). The effect
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a) Inboard Nacelle and Strut b) Top View of Wing and Body

Figure 10: 747-200 Transport Configuration.
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of power on local flow is obvious. This case demonstrates the capability of the TRANAIR code to
handle power effects, a capability usually associated with an Euler formulation.

Concluding Remarks

The method described in this paper is fully implemented for aerodynamics applications in a computer
program called TRANAIR. The results shown in this paper demonstrate the flexibility of TRANAIR
to handle complex geometries in transonic flow. With the ability to account for regions with different
total pressure and total temperature the code is capable of handling engine power effects accurately.
Reliability, generality, efficiency and usability of TRANAIR approach those of panel codes even t hough
the flow now contains shocks and other nonlinear effects.

We are currently implementing adaptive grid refinement which will further enhance the efficiency,
usabilitv and reliability of this code. We plan to add a coupled boundary layer simulation to this code
in the near future. In addition, we are also investigating a wake capturing scheme which has potential
to capture sharp vortex sheets.
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THE SOLUTION OF SCATTERING AND RADIATION PROBLEMS FOR COMPLEX CONFIGURATIONS
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SUMMARY

The increasing interest in predicting the scattering and radiation characteristics of objects with a
complicated structure has stimulated the development of several theories. A rigorous treatment of the elec-
trodynamic problem requires the solution of a boundary value problem based on Maxwell's differential equa-
tions or on the equivalent integral equations. The application of rigorous methods for objects whose di-
mensions are large compared to the wavelength is limited by the required computer memory and execution
time. Therefore, methods which solve the boundary value problem approximately come into consideration.
Each type of solution method involves a typical model either of the surface or the volume of the structu-
re and it's surroundings. So, geometric models consisting of canonical shapes, wire-grids, surface patches,
ard volume cells are described and the requirements of the specific solution methods are discussed. In
some cases estimations for the necessary modeling accuracy are given. Methods which are based on geome-
trical-optics principles require models where the surface parts which are illuminated by the incident wave
and the surface parts which are hidden can be separated for each aspect angle. Such a procedure is dis-
cussed as well as the procedure to treat double reflections. Some computational examples for radiation
and scattering processes are given and comparisons with measurements are made.

1. INTRODUCTION

In electrodynamics there is an increasing demand in predicting the radiated field of antennas instal-
led on complicated structures or the scattered field of radar objects. Therefore, the extension of known
methods and the development of new methods is stimulated to describe the interaction process between
the electromagnetic wave and the structure under test. With the following figures some typical problems
of electrodynamics are illustrated.

Fig. 1.1 shows a periscope within a sea surface. One is interested in the polarisation dependent ra-
dar cross-section of the object in this specific surroundings. The radar cross section is a far-field quan-
tity, which means that it is to be determined at a distance which exceeds 2D2/X. The object with dimension
D is large against the wave length A of the iicident electromagnetic wave.

lines of

constant

% 1position

... . ' 2finding
, __ antenna

AU
- ._ - . -. incident

wave

Fig. 1.1 Periscope within a moving sea surface. Fig. 1.2 Distortion of a plane wave due to the inter-
action between the incident electromagnetic wave and the
structure.

Fig. 1.2 shows an airplane which is equipped for position finding purposes. Since the phase front of
the incoming plane wave is distorted by the airplane structure, the question arises, where an appropriate
place on the airplane for the installation of the direction finding antenna can be found. The magnitude of
the distortion of the wave front in dependence from frequency, polarization and angle of incidence is of
interest. The solution of this problem requires the computation of the scattered near-field, since the di-
mensions of the object are in the order of the wavelength and the position finding antenna is installed at
a distance above the surface which amounts to a fraction of a wavelength.

Fig. 1.3 shows a reflector antenna for a satellite earth station. The radiation forming parts are the
hornparabola, the subreflector and the main reflector. The spherical wave which propagates in the horn is
reflected by the parabolic reflector of the horn towards the subrcflector and transformed into a plane
wave. Since the subreflector also is parabolic the wave is again transformed into a spherical wave. A
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third transformation by the parabolic main reflector finally generates the radiated plane wave. It takes
place if the focus of the main reflector coincides with the phase center of the spherical wave going out
from the subreflector. The computation of the antenna characteristics is a typical far-field problem since
the dimensions of such an antenna are much greater than the wavelength.

Fig. 1.3 Principle of a satellite earth station Fig. 1.4 Torus antenna, capacitive coupled to the inner
antenna (cassegrain type), 1 hornparabola, conductor of a coaxial line.
2 subreflector, 3 main reflector.

Fig. 1.4 finally shows a torus antenna mounted above a circular plate and excited by a small flat pla-
te. Such a device is a very compact radiator since the circumference of the torus antenna is in the order
of a wave length. It finds use as a primary radiator in a central fed reflector. Usually one is not only
interested in the far-field characteristics of such an antenna, but also in the input admittance which is
a near-field quantity.

In the past only approximate theoretical or experimental methods were av?41,tle for prediction purpo-
ses. While approximate methods can fail in giving sufficient accurate predictions of the interaction pro-
cess, experimental methods require a high effort especially if changes of the structure must be carried
out for optimization purposes. In these cases it is desirable to reduce the number of experimental studies
to a few final measurements, which can be defined by the preceding theoretical analysis. This requires
from th2 theory to develop and validate methods which are able to describe the interaction of electro-
magnetic waves with a complicated structure with an accuracy, which is sufficient for practical applica-
tions.

The progress in computer techniques permits in an increasing manner the use of theories, which because
of their high numerical effort could not be considered in the past. There is a great variety of methods
which in principle come into question. Each method has its specific advantages and drawbacks depending
from the type of the problem. Among these methods there are as well as heuristic methods like the physi-
cal optics method, and the geometrical theory of diffraction as rigorous methods, which solve Maxwell's
differential equations directly or undertake the solution of the equivalent integral equations. The
choice of geometric models is influenced by the chosen solution method. Within the context of this paper
it is not possible to describe the electrodynamic methods in detail. More informations may be obtained by
the cited references. A rough classification of the theories can be given as follows.

In the radar case the distance between the source of the incident wave and the object is much greater
than the dimensions of the object. The antenna case is characterized by the fact that the source of the in-
cident wave is either within the radiating structure itself (e.g. a feeding gap of a dipole antenna) or in
the immediate neighbourhood of the scattering object (e.g. an antenna on an airplane). From the standpoint
of a rigorous solution of Maxwell's equations there is no difference between a radiation and a scattering
problem. In the following the more general term scattering problem will be used for both types of problems.

If one is interested in the description of near-field characteristics, e.g. the scattered field in the
immediate neighbourhood of the structure or the field at the surface of the structure itself, only rigorous
methods can be used. If the dimension of the structure, however, exceeds the order of several wavelengths
(high frequency case), rigorous methods will fail in practice because of the required high computer effort.
Fortunately the main contributions to the scattered field in this case originate from parts of the structu-
re which are illuminated from the incident wave or which give rise to double or multiple reflections. The-
se phenomena may be treated by geometrical optics. Wedges in the structure give rise to diffraction pro-
cesses which can be described by an asymptotic evaluation of the rigorous theories for large distances and
large dimensions of the structure. This concept leads to the development of heuristic methods for the high
frequency case. So a very important criterium for the choice of the solution methods is the dimension of
the object referred to the wavelength, that is the parameter D/A.

The solution of Maxwell's equations for the electric field t and the magnetic field A can be carried
out for the volume which surrounds the scatterer. For this purpose it is necessary not only to model the
surface of the scatterer but also the surrounding volume. This leads to one type of geometric models. Max-
well's differential equations can be transduced in equivalent integral equations over the tangential fields
at the surface of the scatterer. This leads to a class of geometric models which have to represent only the
surface of the scatterer. Following the publications in electrodynamics the use of surface models is more
common than the use of volume models. In the subsequent sections several geometric models are discussed
which are typical for the individual electrodynamic solution procedures. Models which are suited for so-
lutions with the integral equation or the physical optics method are emphasized.
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2. MODELING WITH CANONICAL SHAPES

The structure is considered to be an ensemble of components, each of which can be geometrically appro-
ximated by a simple shape. A coarse model of an airplane for example may be established by a cylinder, flat
plates, section of a sphere, see Fig. 2.1. For a certain class of canonical shapes, in particular wedges
and smooth surfaces, theories are available to determine the scattered field for arbitrary aspect angles,
from which the radar cross-section can be evaluated. Several problems will arise. The first problem con-
sists in combining the contributions of the individual shapes by proper phasing to the total field or cross-
section. A further problem arises by the fact that in dependence from the aspect angle one canonical
substructure may hide completely or partially the other one. A third problem concerns the electromagnetic
interaction of one canonical shape with the other.

Fig. 2.1
Model of an airplane with simple shapes.

4 / 7 1 flat plate
5 _ 2 cylinder

3 wedge

4 conus

5 sphere

A procedure which overcomes the first problem consists in combining the contribution of the several
canonical shapes by random phase [1]. This is based on the assumption that the different phases of the ca-
nonical structures are randomly distributed; then upon averaging over the phases one obtains for the radar
cross-section :t of the total object, which is composed of N canonical shapes with cross-sections -. , the
expression3

(2.1) it =
j=1 

j  "

In connection with this method of approach one can estimate the amount of probable deviation from the
avcrage cross-section ,t by employing the root mean square spread. This measure of the probable variation
in cross-section due to relative-phase effects leads to the following bounds: 1-t ± s, where

N N(2.2) s" = ( .), - -.

j=l i j=I

The random phase method is designed to give estimates of the amount by which the cross-section might
deviate from the average value because of phase effects. If one is interested in finding an order-of-magni-
tude estimate of the cross-section as a function of aspect angle the random-phase procedure would be ade-
quate. Since only cross-sections play a role one also can use experimental data for such shapes for which
no theoretical values are available. A further advantage of this method concerns the computer effort since
the evaluation of the radar cross-section for canonical shapes can be done analytically. The values of the
individual shapes can also be calculated in advance for discrete elevation and azimuth angles and together
with the experimental data for the non-canonical shapes properly arranged in a data file. For arbitrary
aspect angles the cross-sections can be evaluated by interpolation schemes.

If one is interested not only to estimate the average value and the amount by which the cross-section
deviates from the average value but also to predict the peaks and nulls of the radar cross-section in de-
pendence from frequency, polarization and position of the observer point one has to combine the scattered
field of the canonical shapes with their relative phases referred to a common reference point. This makes
the use of experimental data more difficult.

At this time the most capable method in electrodynamics which is based on canonical shapes and solves
the relative phase problem is the geometrical theory of diffraction (GTD) 1121. The GTD is a ray optical
technique and is, therefore, bound to such applications where the object's dimensions are much greater than
a wavelength. The GTD makes use from the rigorous solutions for canonical shapes in such a way that a dif-
fraction coefficient D is evaluated which connects the diffracted field with the incident field. This dif-
fraction coefficient plays a similar role as the well-known reflection coefficient R in optics. The most
important canonical shapes of the GTD are shown together with typical ray paths in Fig. 2.2. For the wedge
and the smooth surface the diffraction coefficients are known in case of perfectly conducting bodies while
the reflection coefficient can bc Jetermined also for nonperfectly conducting multilayered panels, see Sec.
7.1.

The rays which undergo reflection and diffraction at the structure and reach the observer point are
to be determined from geometrical and differential geometrical considerations. This ray tracing procedure
is illustrated at hand of Fig. 2.3. A source (slot antenna) is installed at the top of the fuselage of
an airplane. For a given observer direction the following rays are depicted:

- direct ray,
- reflected ray, the reflection occurs at the surface of the left wing,
- wedge diffracted ray, the diffraction occurs at the trailing edge of the left wing,
- surface diffracted ray (creeping wave) which encircles the fuselage and is then radiated toward the

observer point.

The contribution of the several rays are summed up with correct amplitude and phase. If multiply re-
flected and diffracted rays are taken into account the complexity increases considerably. The ray Lracing
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for arbitrary positions of source and observer is one of the main problems of this technique. Nevertheless,
the GTD besides the physical optics method is the most promising approach for the solution of high frequen-
cy problems.

1 2 3 1 4 D

a) reflection at a panel b) diffraction at a wedge c) diffraction at a smooth surface

Fig. 2.2 Canonical shapes and interaction processe. I incident ray, 2 reflected ray, 3 diffracted ray,
4 creeping wave.

Fig. 2.3
Ray paths.

1 slot antenna
2 direct ray
3 reflected ray
4 ccie of diffracted rays
5 geodesic path
6 surface diffracted ray

3. MODELS USED IN THE INTEGRAL EQUATION APPROACH

3.1 REMARKS TO THE ELECTRODYNAMIC THEORY

The electrodynamic processes which are expressed by the differential equations of Maxwell under satis-
fying the boundary conditions can be formulated by equivalent integral equations (IE) for the fields tan-
gential to the surface of the scatterer. For a perfectly conducting scatterer one obtains the following
integral equations which each independently from the other can be applied to solve for the surface tan-
gential field. One of the integral equations is denoted as the electric field integral equation (EFIE) and
given by [12, 141

(31 e 2 e- Jk R 
f

(3.1) '7) - 1()  r(i ) ((-l-jkR+k
2
R
2
) ' + (3+3jkR-k

2
R
2
)(JF(r').eR)-eR) R df

F

the other is denoted as the magnetic field integral equation (MFIE) and expressed by

(3.2) 2n H(r) 2 r) × (l+jkR)(JF(r) eR) df'

F

The geosmetric magnitude? , ', eR, n, F, df' are illustrated in Fig. 3.1. The magnitudes w, c, k
are explained in Sec. 7.1. Ee resp. He is the incident electric resp. ' nmaetic field at the observer point
which is situated on the surface of the scatter r. In radar problems Ee, H is supported by a plane wave
which comes from infinity. In the antenna case fe' He is the outgoing field of a feeding gap (cylinder an-
tenna) or of an aperture (horn antenna). The unkown - F is the electric surface current which is identical
with the tangential component n(r')xA(r') qf the total magnetic field which for its part is the sum of the
incident field He and the scattered field Hs .

observer point e
point

Ee-H

e - e df \~
r df' W

JF(r') re

Sr F

0 F
0

Fig. 3.1 Geometry for the evaluation of the EFIE, MFIE. Fig. 3.2 Far-field geometry.
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The EFIE is an integral equation of the first kind, the MFIE an integral equation of the second kind.
In principle both integral equations may be used independently from another to determine the surface cur-
rent. However, in practice it turns out that there are significant differences depending from the geometry
of the scatterer. The MFIE has advantages if the structure consists of smooth surfaces (e.g. an airplane),
whose radius of curvature are large compared to the wavelength. The first term on the right-hand side re-
presents the physical optics current distribution, see Sec. 4. The contribution of the integral can be con-
sidered as a correction term to the physical optics theory. The MFIE cannot be used for structures which
are very thin compared to the wavelength like thin cylinders or thin shells. In these cases the EFIE must
be used. The use of the EFIE is also recommended if the scatterer shows a lot of structural details (e.g.
a tank or a helicopter).

The integral equations can be transduced to linear systems of equations by the method of moments. For
this purpose a set of known basis functions (expansion functions) with unknown complex coefficients are in-
troduced according which the surface current is expanded. With a second set of known testing functions
(weighting functions) both sides of the equations are multiplied and then integrated over the region of
the structure. These steps result in a linear system of equations for the unknown coefficients of the ba-
sis functions. The right-hand side contains the known incident field depending from aspect angle and pola-
rization. The matrix of the system of equations, frequently denoted as impedance matrix, depends only from
the frequency and from the geometry of the structure.

The computer effort of the integral equation method is due to the calculation of the matrix elements
and to the matrix inversion. The calculation of the matrix elements requires in general two integrations,
one for the evaluation of the original surface integral over the basis functions, the other for the con-
struction of the moments with the testing functions. Both integrals in general must be evaluated numeri-
cally. Very often the testing functions were chosen to be Dirac functions. In this case the value of the
second integral is represented by the integrand itself and one speaks from the point-matching method. The
method of Galerkin is characterized by testing functions which are identical with the basis functions.

An impu, Lant feature of the integral equation appruach consists in the fact, that besides the modeling
of the structure no more geometric problems must be solved if the direction of the incident wave varies.
This is due to the magnitude R in the field equations which represents the geometric distance between the
integration point and the observer point on the surface. This is also true if there exists some part of the
structure between these points.

If the matrix of the system of equations is inverted directly the surface currents can be calculated
for each aspect angle and polarization of the incident wave by merely multiplying the right-hand column vec-
tor with the inverse. This solution method should, therefore, be preferred if for only a few frequencies
a lot of changes of the incident field are foreseen.

if the surface current is known a further integration has to be carried out ir order to compute the
scattered far-field, from which the scattering matrix T and the polarization dependont radar cross-sec-
tions may be derived. The expressions for the far-field are given by:

(3.3) tS(;) = j, e-J k r 
, F dfT7 r r ' r ' F(r

The far-field geometry is represented in Fig. 3.2.

The components of the backscattered field can be related to the components of the incident field by a
scattering matrix [T] in the following manner:

(3.4) = [TI ex , with (3.5) [T] - .xx txy

sy Eey 4 yx tyy

For this representation it has been assumed that the z-axis of a cartesian coordinate system with ori-
gin in the neighbourhood of the object is directed towards the radar observer. The elements tij of the
scattering matrix are given by

(3.6) tij = 4,r2 rs, r , i = x,y, j=x,y.ej

The polarization depend cross-sections then are given by

(3.7) ij 
=  

ij t j .

An analytical evaluation of the scattering matrix is not possible in general. Since the integral equa-
tion method determines the current distribution at the surface of the structure a 3-D model of only the
surface is required. There are two principal ways to establish surface models. One way consists in modeling
a solid surface body with a grid of wires, the so-called wire-grid model. The other common approach breaks
the surface up into patches or cells each having a continuous metallic surface. Both models are discussed
in the following two sections in more detail.

3.2 WIRE-GRID MODEL

In the field of antennas there are a variety of structures which consist of wires like a corner re-
flector antenna, see Fig. 3.3 or a Yagi-Uda-antenna, see Fig. 3.4. For both antennas the wire technique is
used to generate specific antenna characteristics.



Fig. 3.3 Corner reflector antenna. Fig. 3.4 Yagi-Uda array. Fig. 3.5 Radar antenna reflector.

Wire-grid meshes also find many uses in applications where the effect of a solid conducting surface
is required but the weight and/or wind resistance of the latter must be avoided. They may be used, for
example, to fabricate radar antenna reflectors, see Fig. 3.5, and as shields to screen sensitive equip-
ment from stray fields [8].

If any of the three structures would be modeled by a wire-grid, the model would perfectly agree with
the original structure. The substitution of an arbitrary solid surface by a wire-grid model depends upon
the fact, that as the mesh size becomes smaller relative to the shortest wavelength of concern, the mesn
supports a surface current distribution which approaches that on the continuous surface. The current is
only an approximation to the actual current, however, and as such it can be expected to reasonably pre-
dict the far-fields but possibly not the near-fields. This is due to the fact that the grid supports an
evanescent reactive field on both sides of its surface. An actual continuous surface is not capable of
supporting such a field [181.

If thin (compared to the wavelength) wires are chosen to construct a wire-grid the current essentially
has only an axial component. In this case the EFIE simplifies considerably. The MFIE, however, will fail in
the thin-wire approximation. The thin-wire EFIE is given by

S' + e-j kR
(3.8) . e(s) : I . ((-I-jRk 2R2 )  

' + R) (s) ds
L R

where ; is the unit tangent vector of the wire at the observer point and ' is the unit tangent vector of
the wire at the integration point. Fig. 3.6 shows two wires i and j from a wire-grid for which the inter-
action after discretization of Eq. (3.8) is computed. j is the wire with the integration point and i the
wire with the observer point. For more details, see [14].

[101 was apparently the first report on the application of the thin-wire EFIE to the analyses of wire-
grid models for circular disks and spheres. Satisfactory agreement was demonstrated between the wire-grid
results and independent analytical or experimental back-scatter cross-section data presented as a function
of frequency.

Since the number of the unknown of the linear system of equations is identical with the number of wire
segments an estimation of the minimum mesh width is of great interest. This is primarily dependent on
the choice of basis and test functions.

A good estimation of the mesh width is obtained, if a source is positioned within a structure, which
is modeled by a wire-grid with variable mesh width. The field in the exterior of the structure, which
should be zero, is then computed in dependence on the mesh width.

A 0.4

.: r 0.2

S 2 #Y

ement I Q

mesh width 0.

Fig. 3.6 Geciietric situation of two wires i and j Fig. 3.7 Influence of the mesh width.
of the ensemble of N wires.
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For this theoretical experiment a cube with an edge length of 0.4 A has been chosen. In the center of
the cube a point source was positioned. The diameter of the wire was 0.003 X, so that the thin-wire appro-
ximation of the EFIE holds. The basis functions are chosen to be pulses, the boundary conditions were
satisfied in the center of the wire (Dirac functions as testing functions).

Fig. 3.7 shows the electric field in the exterior in dependence from the mesh width. A mesh width of
0.057 X corresponds to about 600 wire segments. One can assume, that a mesh width of about 0.1 A in mode-
ling a structure should be sufficient for far-field computations. This means, that about 200 wire segments
are necessary to model a surface with a size of X x X. Since per segment only one current coefficient has
to be determined the dimension of the linear system of equations is given by

(3.9a) N , 200 F/A
2 

, F = surface of the scatterer.

Shorter wire segments, 0.05 A or less, may be needed in modeling critical regions of a structure.

More sophisticated studies show, that the accuracy with which a wire-grid model simulates an actual
surface depends on the computer code (i.e., expansion and weighting functions) used, the radius of the wire
segments used, as well as the grid size. For example, with pulse basis functions it has been found that a
grid spacing of about 0.1 A to 0.2 A yields good results. With the piecewise sinusoidal Galerkin method,
it has been found that the grid size should not exceed A/4 and that a suitable wire radius is a = w/25
where w denotes the width or length (whichever is greater) of the apertures [18]. A grid size of A/4 would
lead to the following expressomn for the dimension of the linear system of equations:

(3.9b) N 32 F/A
2 

.

From the above remrks concerning the substitution of a solid surface by a wire-grid system one con-
cludes that the far-field properties of the structures such as the radar cross-section or the antenna ra-
diation pattern can be predicted with uifficient accuracy. This is demonstrated at hand of the computed
far-field pattern of an antenna system installed on a helicopter of the type BO 105.

Fig. 3.8 presents the details of the actual structure with the position of the two /4-monopoles ope-
rating in the VHF-band. Fig. 3.9 shows the wire-grid model. The antenna on the right-hand side of the
flight direction was driven, the other was terminated. The in flight-measurement of the radiation pattern
in the horizontal plane for a frequency of 117.6 MHz is presented in Fig. 3.10 by the dashed line. The
flight direction is defined by , = 00.

It could be shown that the immediate neighbourhood )f the antennas, that is the shape of the top side
and the drive for the blades, must carefully be modeled while the farer parts of the helicopter, especial-
ly the lower part could be approximated only roughly or even completely neglected. The actual thickness of
the shaft of the drive was taken into account. In principle a monopole array, consisting of a driven and
two parasitic excited monopoles, a thin and thick one, over a finite plane, was analyzed. The theoretical
results are illustrated in Fig. 3.10 by the solid line. For mo'e details see 1121.

Such studies, while illustrating the applicability of wire-grid meshes as models for solid surfaces in
terms of their far-field electromagnetic behavior are not entirely convincing as to the use of wire-orid
models to determine near-field quantities such as current distributions [81. Preliminary studies in this
regard to compare the results obtained with independent theoretical results or with experimental results
are not yet conclusive. Such comparisons should do much to more clearly define areas of applications and
limitations of wire-grid models. A special problem seems to be the stability of numerical results, that is
the independence on the solution from the number of wires.

[his is demonstrated at hand of a simple dipole-antenna of length 0.45 X and diameter of 0.014 1. Fig.
3.11 shows the input admittance (proportional to the current at the source point) which is a near-field
quantity in dependence from the number of wires which are used to model this dipole [241. The upper dia-
gram represents the real part (conductance), the lower diagram the imaginary part (susceptance) for two
feeding models. The dashed line is based on a voltage-source model, the solid line on a frill-current mo-
del. One realizes that the conductance for both source models tends to a finite value in dependence from
the number of wires. The susceptance, however, does not reach a stable value in both cases. This behavior
may be due to either the source models or the wire approximation of the dipole or to the specific combina-
tion of basis and testing functions. Further studies are in progress.

Fig. 3.8
Position of the VHF-antennas on the heli-
copter.

F_ . ,
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F ig. 3.9 Wire-cirid model of the helicopter.

240,0

Fig. 3.10 Comparison between in flight-
measurements (dashed line) and results of200io
the IEM (solid line), frequency 111.6 MHz.
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surface. For each patch 2 complex current coefficients have to be determined. Therefore, the dimension of
the complex linear system of equations can be estimated by

(3.10) N =2N* 50 FI X2 .

An estimation of the computer time T for matrix inversion in dependence on the surface area F of a
general 3-D structure is presented in Table 3.1. In the second column of the table the edge length a/X of
an equivalent cube as a representative for a general 3-D structure is given and in the third column the
number N of the complex unknowns which have to be determined are listed. It is assumed that an economic
programming under introducing of block structures has been achieved. From this table one can realize that
the limit of application of the integral equation method with respect to the sti-ucture's dimensions is
drawn by the required computer effort.

FIX
2  

a lX N T/s

10 1,29 500 < 50
20 1,82 1000 50 Table 3.1
30 2,23 1500 180 Matrix inversion time (computer Cray-i) in dependence
40 2,58 2000 350 on the surface area F of a general 3-D structure.
50 2,89 2500 700
60 3,16 3000 1200

The figure N is in the same order of magnitude as it is in the wire-grid model. In the case of near-
field considerations much finer modeling has to be chosen. Since the surface patch model in principle
should be suited to compute near-field quantities one has applied the surface patch model for che calcula-
tion of the lines of constant phases in the extreme near-field of an airplane (type Do 228). For the so-
lution of this problem the MFIE was chosen with pulse functions as basis functions and Dirac-functions
as testing functions. Fig. 3.13 shows a surface patch model of 280 patches for half of the airplane. The
patches are quadrangles and triangles.

The i nes of constant phases, represented in Fig. 3. 14 , are calculated for a wavelength of =6.Oi
and a distance of ' /30 from the upper part of the fuselage. The plane wave is incident towards the nose of
the airplane under an elevation angle of 300 over the horizontal plane. The polarization vector is verti-
cal to this plane. The increment between the lines of constant phases has an amount of 100.

Fig. 3.13
Surface patch model of an airplane
(type Do 228).

Fig. 2.14
Lines of constant phcses in the near-

..... --- ,,,---- field of an airplane.

f ,,, .,,
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Since direct experimental validations require a high effort the method wes verified at hand of a cube
with edge length a = X. One side of the cube was subdivided in 5 x 5 quadratic panels for measurement pur-
poses, see Fig. 3.15. In the middle of each panel a hole was bored by which probes for the surface fields
could be positioned from the interior of the cube. For computational purposes the number of the panels was
varied until a stable result was attained.

The comparison between measurement (circle) and theory (solid line) is drawn in Fig. 3.16. Fig. 3.16a
represents the amplitude and Fig. 3.16b the phase of the surface current on the front of the cube.

The component of the current distribution is ;hosen to be parallel to tne vector of the fieia inci-
dent vertically on the front. Amplitudes and phases are relative values. Parameter of the curves is the
row of holes defined by the normalized z-coordinate.

.010 i
'009

007 z±0.4a

.006 4 __21 22 23 24 25.0 
2

16 17 18 19 12_1 
_ _00

a) ___ ___ ___

9 ,001__ _ _ _

-4 -
200 -______

190
Fig. 3.15 Panel model of a cube.

60 z=±O.2a

00 - - I z-o.

b)i

Fig. 3.16 Experimental and theoretical results ?0 b)
for the current distribution on the front of o J

the cube. a) amplitude, b) phase. -4 -2 0 2 1

4. MODELS USED IN THE PHYSICAL OPTICS APPROACH

4.1 REMARKS TO THE ELECTRODYNAMIC THEORY

The physical optics (PO) method is based on the diffraction theory of Kirchhoff, who described the

diffraction phenomena of light (scalar problem) by approximating the boundary conditions at the surface of

the scatterer with the aid of optics principles. The idea of Kirchhoff has been extended to the electro-

dynamic vectorial problem for perfectly conducting bodies [3, 4, 111. The application and extension of the

PO-method for -r-plicated structures including nonperfect conductivity and double reflections is reported

in the references 15 - 7, 151.

I
f 

the scatterer is perfectly conducting the following boundary conditions according the idea of Kirch-

hoff are valid for the shadow region of the structure:

(4.1) r = 0

(4.2) n H = 0

while fnr the illuminated reqion the boundary conditions are given by

(4.3) o t 0 ,

(4.4) no 9 x 
+ 

n , Ar = 2'n - 9e

where Ar is the vector of the reflected magnetic field.

The boundary conditions for the electric field are exact, while the boundary conditions for the magne-

iq fietd would only be exact if the scattlrer would consist of an infinitely extended plane, where

n-Rr:nRe in the illuminated region and nxH = 0 in the shadow region holds. However, it can be assumed that

the above given boundary conditions would approximate very well the actual ones, if the scatterer is mode-
led by panels which are large compared to the wavelength. So a modeling of the structure by flat surface

patches (panels) is a natural consequence of the formulation of the boundary conditions.



From Eq. (4.4) follows that the surface current is given by

(4.5) 1F = 2' x Ae

which, therefore, is identical to the first term on the right-hand side of the rigorous integral equation,
see Eq. (3.2). The evaluation of the far-field integral, Eq. (3.3), can be done analytically and leads to
the following expression for the backscattering matrix of a single panel

(4.6) [T1  jke-jkr F e
2jkz dx' dy 1 0

F p0 1i Fp

Tne scattering matrix of the total object then is the sum of the scattering matrices of the individual
panels. If a panel has straight edges the phase integral can be solved analytically, so that the calcula-
tion of the scattered field requires only a minor computer effort.

If the scatterer is nonperfectly conducting one cannot formulate any exact boundary condition in the
PO-sense. In the shadow region the boundary conditions again are approximated by Eqs. (4.1) and (4.2)
while in the illuminated region

(4.8) n' x e + nx
e r

are assumed. is the vector of the reflected electric field. Again these boundary conditions would be
exact, if the catterer could be represented by an infinitely extended nonperfectly conducting plane. Since
the reflected field can be calculated from the incident field by multiplication with the reflection co-
efficients of Fresnel the scattered field again can be evaluated analytically from the integral representa-
tion for the far-field

(4.9)j ejkr r (e x F (er xF(r))) ekr df'
s - r r r  r  x 

rFxj) +

F

where the magnetic surface current is given by

(4.10) kF = 
_  × f "

One receives for the scattering matrix of a single panel

(4.11) [T = -ke (l-n_ )p_ e 2jkz' dx' dY' RH n-RE ny (RH+RE) x Y
2 T 2r (1-n 2 2 xy {fl ~ Rz F(R +R )nx n P 'pH H n- E H x

nx , n nz are the components of the normal unit vector of the panel. RH resp. RE are the reflection
coefficients at the surface of a multilayered panel for the case that the incident magnetic field resp.
electric field is directed parallel to the surface of the panel, see Sec. 7.1 and [9].

The ansatz of PO implies that the current distribution will be constant in the amplitude over the
surface of a panel and varies proportional to the phase of the incident field. Since this result differs
from the result of more rigorous solutions it is necessary to estimate the deviations. For this purpose a
strip with a width of a = X is considered, the edges of which are directed along the z-axis, which is verti-
cal to the plane of the Fig. 4.1. The vector of the incident electric field, which hits the strip plane
vertically is also directed along the z-axis, that is parallel to the edges of the plane. The current di-
stribution over the strip computed with the IE-method [231 is represented by the solid li;.c, whereas the
constant amplitude of the PO-current is indicated by the dashed line.

t I I I

Hex 3
*a - Fig. 4.1

Comparison of the current distributions calculatedP O -current by the IE- and the PO-method.

O] I )

-0.5 -0.25 0 0.25 0.5
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One can conclude that for an isolated panel the magnitude of the differences between the IE- and PO-
result depends on the distance from the edge. In the middle of the panel the deviations are minimal while
in approaching the edges the differences increase considerably. With increasing panel size referred to the
wave length, the panel area in which edge current effects play a role are much smaller than the remaining
panel area where the PO-current dominates. Therefore, the PO-field will represent the actual field with
increasing accuracy if the panel size increases. If, however, a structure whose dimensions are large com-
pared to the wavelength is modeled by a series of connected panels, the size of the panels can be as small
as the admissible deviation between true and modeled surface, see Sec. 4.2.

The need to improve the PO-field for small panels gives rise to the development of an edge correction
term. The evaluation of an edge correction term for panels with perfectly conducting faces is based on the
rigorous solution of an infinitely extended wedge. This solution, however, is very complex so that an asymp-
totic representation (kr >> 1) of the result is preferred, which leads to analytical expressions for the
total scattered field consisting of the PO-field and an edge diffracted field. Since a correction term is
required the PO-field in its asymptotic form must be removed from the total scattered field. Following this
idea which is the basis of the physical theory of diffraction (PTD), one receives the backscattering matrix
for the edge of a perfectly conducting wedge as follows [16, 17]:

-jrj2kr [ ot' +Dt 2 -D t t ( -0) t t + D t2  ]
4 ejkr sin(kL cos) e Mz e x my em x y e m x y em x

(4.12) [T 31 r L Cosa B 2D 2 t
z=o (De-D)tt -e t D + D t+D t t

e mT x y em y m x e y em x y

with L = length of the edge, rMz = z-coordinate of the edge mid-point, txtvt components of the unit
tangent vector of the edge, B = angle between the direction of incidence an the edge.

The coefficients D e, D D Dem (a,p,n) describe the difference between the asymptotic rigorous solution
and the asymptotic PO-solution and depend besides 6 from the outer wedge angle nr and the angle between
the plane of incidence and a face of the wedge, see Sec. 7.2. It is emphasized that the rigorous asymptotic
solution is carried out for an infinite long wedge, while actually the results for a finite edge length
are needed. That is corner effects are not taken into account. This can cause the unsymmetry of the above
given matrix. However, the effects of an edge with finite length is comparable to the basis idea of PO
which uses a reflection coefficient of an infinite plane to estimate the effects of a finite panel. A si-
milar solution for nonperfectly conducting wedges is missing at this time.

The matrixes IT1 ], [T2 1 and [T3] represent the most important analytical tool of the PO. The illumi-
nated elements of the surface patch model can be classified s follows: perfectly conducting panels, non-
perfectly conducting panels, perfectly conducting doubly reflecting panels, nonperfectly conducting doubly
reflecting panels, perfectly conducting edges. The doubly reflecting panels can be treated like the direct-
ly reflecting panels using the method discussed in Sec. 4.4. Their polarization characteristics can be des-
cribed by a further scattering matrix [T4 1 which is not represented here, but can be evaluated from the po-
larization vector given in [7]. An independent summation of all matrixes IT I, [T2], [T3] and [T-1 cai. 'v
achieved. The sum of the individual summations then represents the scatterihg matrix of the total object.

The -¢aluation of the matrix elements and the summation of the matrices can be done in a very econo-
mic way. Thus the computer effort for the electrodynamic calculations (about 0.01 s per panel and aspect
angle) is much less than that of the IE-method. Another important difference concerns the size of the pa-
nels. The IE-method requires panel dimensions in the order of X/5 even if a cube is modeled for example.
The panels of the PO-method may be as large as the actual surface can be modeled with sufficient accuracy,
see the following section. The cube, therefore, can be modeled accurately with only 6 panels. This fact is
also suited to reduce the computer time considerably. However, in contrary to the IE-method the geometric
problems are not at all solved with the creation of a surface model. According the geometric optics idea
a decision must be made whether a panel is illuminated, partially illuminated or hidden. The same is true
for all edges. This decision must be made whenever the observer point changes. A similar geometric problem
is connected with double and multiple reflections. It can be concluded that the ray-tracing problem inhe-
rent to the GTD, becomes also relevant with a PO-method of increasing complexity.

While the principle of PO is known since a long time only a limited experience exists in applying the
method for complex structures. This requires an extensive comparison of the theoretical results with ex-
perimental results which has be done with good success for a variety of metallic objects 15 - 7, 15]. An
estimation of the edge diffraction theory will be available in short. Tests to compare theory and experi-
ment for nonperfectly conductinq bodies are in progress [16, 171.

4.2 SIZE OF THE PANELS

In modeling a structure by panels the question arises according to which criterium the size of the pa-
nels has to be determined. On the one hand one would like to choose the panel size as large as possible in
order to safe computer time. On the other hand the admissible deviation between the true surface and the
model surface is subject to the required accuracy of the electromagnetic magnitudes. A series of tests has
shown that the deviation between the true surface and the model surface should not exceed a value of about

(4.13) t . X/16 , see Fig. 4.2.

This criterium is well known from antenna measuring technique. If the admissible phase error over the
aperture with diameter D of the antenna under test is assumed to be 22.50 (X/16), then the far-field di-
stance R must be chosen in such a way that R • 2D2 /X. The true far-field pattern for the distance R *

then will differ only in a negligible amount from the measured one.

In order to estimate the errors which are generated by the differences between an actual surface and a
panel model of it the following test was arranged. The test object consists of a cone, a cylinder and a
half-sphere and is manufactured twice: one configuration with smooth surfaces and the other by modeling
the smooth surfaces by panels, see Fig. 4.3.



22-13

Amax

modeleda
surface

true i ~
surface i

Fig. 4.2 Admissible deviation between the true and Fig. 4.3 Test object modeled by panels.
the modeled surface: Amax x X/16.

The geometric differences between these two objects do not exceed a value of X/16. For both objects
the radar cross-section has been determined by experiment. The results are shown in Fig. 4.4a for the
smooth object and in Fig. 4.4b for the paneled object. At an aspect angle of 900 the object is seen from
broadside, at 1800 the half-sphere is seen.

i o-

f 10V
0

E

a a)

-10 -b

0 -20

-30 "

900 aspect angle 1800 900 aspect angle 1800

Fig. 4.4 Comparison of the measured radar cross-section for a smooth and a paneled object. a) smooth object,
b) paneled object. Length: 2450 mm, diameter: 440 mm, frequency: 15.5 GHz, polarization: hh.

biynifirant differences only occur at aspect angles near 1800 where the half-sphere becomes visible.
The radar cross-section level in this region, however, has a level of only -16 dB (, 0.025 m

2
) compared to

the peak level of about 8.5 dB (z 7 M
2
). Under -ar-tical viewpoints this difference can be ignored. If,

however, one is interested in higher accuracies the panel model has to be refined.

4.3 HIDDEN SURFACE PROCEDURE

In contrary to the models of the rigorous methods, Sec. 3 and Sec. 5, the surface model of the PO-me-
thod is not invariant against the position of the observer point. According the optics basis idea of PO
for each point of observation an elimination of the hidden panels must be done. If panels are partially
hidden they must be broken into new panels, some of which again are completely hidden. The hidden surface
procedure 1131 consists of several steps which are explained at hand of the following series of figures.
Fig. 4.5 shows the original situation: a rectangular box modeled by rectangular panels with a triangle in
front of it. Fig. 4.6 shows the situation after removal of all surfaces with normal vectors including more
than 900 with the observer direction.

I Fig. 4.5 1 Fig. 4.6
Original situation: Removal of those surfaces,
box and triangle in whose unit normal vector has
front of it. no component in the direction

2 of the point of observation.

The next step consists in a comparison of the remaining panels two by two. For each pair the upper one
i.e. the one closest to the observer has to be found. For this purpose the edges of the respective two pa-
nels are projected in the xy-plane. The intersection points of the projected edges are determined. For each
original edge then the spatial points belonging to the two-dimensional intersection 'oints are calculated.
From the differences in tre z-values of the spatial points the upper panel can be determined. In principle
it is sufficient to compare the differences in the z-coordinate of one intersection point. In Fig. 4.7
the discussed procedure is illustrated at hand of the triangle and the front-face of the box.
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projection .f X

panel 1 ' and 2
in the xy-plane:

x y-pIa ne- Fig. 4.7
Determination of the upper one of two' \ \panels.

Y intersection points .

in the xy-plane

If no intersection points can be found the following two situations may occur: one projected panel
lies in the interior of the other, see Fig. 4.8, or both panels are wholly apart, see Fig. 4.9.

Fig. 4.8 Fig. 4.9
I No intersection No intersection point:

point: panel 2 lies the panels don't hide each
p in the interior other.

of panel 1.
P

For the decision which situation is in question each corner point P of the second panel is inserted
in the equations (x = xpO + WP2 + k'XP4) for two identical planes which are generated by the vectors of
the adjacent edges of panel 1. This is illustrated by Fig. 4.10. If all of the parameters of the plane
equations have positive values the edge point P and therewith the total projected panel 2 lies in the
interior of the projected panel 1. Again from the difference of the z-cuordinates of the projected corner
points one can decide which of the panels is the upper one.

-0fr

14 X 34Fig. 4.10
.4-. Test if a corner point P of panel 2 is

1 1 X in the interior of panel 1.
P a) plane defined by x10' x12' '14

/.k i b) plane defined by x x32  x34

X 10 X12  -x32
0 0

The last step consists in breaking up the visible part of the lower panel in new panels which are vi-
sible and those which are hidden by the upper panel. This is illustrated by Fig. 4.11.

Fig. 4.11

Splitting up of the lower panel into new panels.

per panel

Fig. 4.12 shows the original box with the triangle in front of it after the discussed method has been
applied to all panels. Fig. 4.13 just shows the remaining visible panels of the box.

S Fig. 4.12 Fig. 4.13
Box and triangle Remaining panels of the
after application_ box.

of the hidden sur-
face method.

Since all the panels of a structure must be compared two by two for each angle of observation one



tries to minimize the number of comparisons by a pre-processing of the panel data. One efficient method

is based on the construction of a minimum rectangle in the projection plane. This is illustrated at hand
of Fig. 4.14.

V grid

minimum
, rectangle Fig. 4.14

- - 1,2' of panel 2 Construction of minimum rectangles.

S- _ minimum
,- _-_-J rectangle

of panel 1

A grid is generated which is parallel to the axis of the xy-plane. For each panel the minimum rectang-
le which also is parallel to the axis is determined and all the elements of the grid which completely or
partially are hidden by the minimum rectangles are computed and associated to the individual panels. Only
those panels of the structure must be compared which are associated to the same grid element.

4.4 DOUBLY REFLECTING PANELS

Double reflection between two panels A and B occurs, see Fig. 4.15, if

1. both panels are visible from the radar transmitter/receiver,

2. the unit normal vectors na and nb of the panels are vertical to each other, which is expressed by the
formula

(4.14) arccos(n a  •nb) 2

and

3. the line of intersection of the panel planes is vertical to the z axis:

'4.15) arccos((na n e ) =

ohservallon
, ecelver /iransmftter dI.h n~',

Z - G O - d ire~ tw n l / h id d e n

z I IO0-droceau,

I t 60- I p//o A

c A L 7','

T3 PaneliB 7
+ . , n

of Pa,,~

;A'

Fig. 4.15 Geometry for double reflection. Fig. 4.16 Determination of the illuminated subarea.

For double reflections in the GO sense the angle is set to zero. I takes into account that the PO
field of panel B propagates not only in the GO direction. A search procedure has been developed which spe-
cifies all thoce panels of the structure which meet the above conditions. The appropriate value of the
angle , is the subject of current investigations.

Fig. 4.16 shows two doubly reflecting panels A and B where only a subarea of panel B is illuminated by
the reflected rays emanating from panel A. The subarea of panel B is constructed by a further application
of the previous explained hidden surface procedure, where the observation direction now is coincident with
the direction of the reflections from panel A. The part of panel B which is shadowed by panel A is the
desired subarea.

The backscattering matrix of each panel is described directly by Eq. (4.11). Additionally, each panel
generates a reflected field at the surface of the other panel, which is scattered toward the receiver. This
means that two doubly reflecting panels produce two backscattered fields and two field contributions due to
double reflections. In Fig. 4.15 only the path from the transmitter via panel A and B back to the receiver
is illustrated. The construction of the backscattered field is outlined as follows.

The field incident from the transmitter at panel A has to be decomposed into components parallel and
vertical to the plane of incidence and multiplied with the appropriate reflection coefficients. From these
components the reflected field of panel A and therewith the incident field at panel B is constructed, ta-
king into account the appropriate path length. The same procedure is repeated at panel B to receive the
reflected GO-field. From the incident and the ref'!cted field the total field at the surface of panel B can
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be constructed and Eq. (4.9) can be applied to compute the scattered field and therewith the scattering
matrix for the direction of the receiver.

For double reflection the phase integral in Eq. (4.9) can be treated in the same manner as in the ca-
se of a single panel by introducing the so-called virtual panels. A virtual panel is constructed in such
a way that the path length transmitter - doubly reflecting panels - receiver is the same as the path length
transmitter - virtual panel - receiver. In Fig. 4.15 the construction of the virtual panel A' is illustra-
ted.

The theory has been tested at hand of a cube with additional surfaces which give rise to shadowing
and double reflection effects, see Fig. 4.17. The comparison between theoretical and experimental results
for the radar cross-section at a frequency of 16.66 GHz (X = 18 mm) is presented in Fig. 4.18 for vertical
polarization and for aspect angles ranging from -450 to 135 . Within this range the interference of the two
doubly reflecting parts of the structure takes place.

Comparing the measured with the computed results, one observes a rather good agreement down to levels
of about -30 dB. The peaks at 00 and 900 are due to the GO reflections, the peaks between arise from the
interference of the PO fields from the two doubly reflecting areas. The theoretical and experimental deter-
mined number of these peaks agree well.
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5. MODELS USED FOR THE TIME-DEPENDENT SOLUTION OF MAXWELL'S EQUATIONS

In the following two rather new methods are discussed which solve Maxwell's time-dependent curl equa-
tions numerically. These methods seem to be useful for studying propagation of an electromagnetic wave in-
to a volume of space containing an arbitrary-shaped dielectric or conducting body. By time-stepping or re-
peatedly implementing a finite-difference analog of the curl equations at each cell of the corresponding
space lattice, the incident wave is tracked as it first propagates to the structure and then interacts with
it via penetration and diffraction. W3ve tracking is completed when the desired late-time or sinusoidal
steady-state behavior is observed at each lattice cell. In contrary to the IE- or PD-method not only the
surface of the scatterer but also the surrounding volume must be modeled.

A basic problem with any finite difference solution of Maxwell's equations is the treatment of the
field vector components at the lattice truncation. Because of limited computer storage, the lattice must
terminate close to the scatterer. Proper truncaction of the lattice requires that any outgoing wave dis-
appears at the lattice boundary without reflections during the continuous time stepping of the algorithm.

In the first reported method (19 7 211 Maxwell's equations

(5.1) 2t = I Vat F

(5.2) A = -IVx

are solved directly

The scatterer is enclosed in a rectangular volume, see Fig. 5.1. The various details of the structure
are modeled with a measuring resolution of one unit cell. Time-stepping is accomplished by an explicit fi-



nite-difference procedure. For a Cartesian cubic-cell space lattice, this procedure involves positioning
the components of r and H about a unit cell of the lattice as shown in Fig. 5.1 and evaluating f and A at
alternate half-time steps [22]. In this manner, centered difference expressions can be used for both the
space and time derivatives to attain secc order accuracy in the space and time increments. This leads
to a system of 6 finite-difference equatios.

For example [191, the x-component of Eq. (5.2), written as

(Hx i Ey Ez

5 . ) ( - - -

is implemented as the following time-stepping relation for Hx

(5.4) Hn+1/
2 

(i,j + 1/2, k + 1/2) H n-/2x (ij + 1/2, k + 1/2) + -
(.) x (ijHO! 7Tj + 112, k + 12

(E n (i j+1/29k+l) - E n(i j+1/2,k) + E n(ii jk+1/2) - E n(i j+1,k+1/2)).
y yZ

The space-time functional notation Fn(i,j,k)=F(i 5,il,k ,n5t) is used, where I = Tx = ly = Tz is the
space increment, 5t is the time increment, and i,j,k and n are integers.

z Ex AH I A.

E A E, cel Fig. 5.1
E, ,Geometry of a scatterer and

lattice arrangement (b), Posi-
E H saetions of the field components

Ezx scatterr about a unit cell (a) [19].

(ij,k) Ey

Zx 1" .1 b)

a)

.ith the system of finite-difference equations the new value of a field vector component at any lat-
tice point depends only on its previous value and on the previous values of the components of the other
field vector at adjacent points. Therefore, at any given time step the computation of a field vector may
proceed one point at a time.

The second time-domain approach i2l to be discussed is based on an integral form of Maxwell's equa-
ticns. Integration of Eq. (5.1) resp. Eq. (5.2) over a volume V fixed in space with surface F yields

d ; dv - •d

(ft Ir v =d
VF

(5.6) d H I r dfdt "

V F

The computational domain around the structure is finite and is descretized by a grid aligned to the
structure's surface. The grid consists of curved coordinate surfaces i = const., j = const. and k = const.,
the volume elenents V(i,jk) are general hexahedra (Fig. 5.2a) with surfac vectors (1(i,j,k), ti(i+1,j,k),
j i,j,k) . ... ( i,jk+l). According to Eqs. (5.5) and (5.6) the vector- H(ij,k), E i,jk) of the left-

hand side are centered within V(i,j,k) and the vectors HI(i,j,k), ti(i,j,k), ... are centered within re-
lated faces (Fig. 5.2b).

The vectors are volume-averaged resp. face-averaeod field quantities. Eq. (5.6) for example has the
following centered difference expression for the space derivatives:

(5.7) d cij i k / 1., 4,l (t
dt [, J, ] (( i i t i+l,j,k + (ri ' ti)i,j, k  + (rj , j)i,j+l,k + (j j)i,j,k 

+

+ (rk ' k)i,j,k l ' (rk ' k i,j,k )  
"

No difference expression f r the time derivative is used. The surface vectors i, i ... are compu-

ted from the volume vectors H, r which are known from th preceding time step by linear interpo - ion in
the inde/ space (i ,j,k). A similar expression holds for dr( i,j,k)/dt. Thus Eqs. (5.5) and (5.6) are re-
placed by a set of ordinary differential equations with respect to time t. These equations are integra-
ted by a Runge/Kutta-type procedure with appropriate step-size control.
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Since in both approaches no matrix equations have to be solved, it is possible to split the grid into
qijbdomains. In addition both computer codes are suited for adaption to parallel-processing and vector-
array-processing computers. lhe renuired memory increases for both methods only linearly with N, the total
number of field components to be determined. The value of N is a function of the normalized electric volu-
me of a scatterer, e.g. N - (D/A)3 where D is a characteristic dimension of the scatterer. With L, the num-
ber of required time steps, the execution time is estimated to be proportional to L x (D/)3.

For the I-method applied to perfectly conducting scatterers tne number of unknowns varies with the
surface of the scatterer, see Eqs. (3.9) and (3.10), that is N - (D/X)'. The required memory for matrix in-
version varies with (0/A)'. The estimation of the execution time depends on the chosen method for the
solution of linear system of equatiors. For iterative methods the execution time varies with (D/ ) which
is little more than the requirements of the methods discussed in this Section. For direct solution methods
however, the execution time varies with (D/X)

6 which is significantly greater as for the time-domain
approach. A direct inversion, however, has the advantage that is must be done only once per frequency,
since the matrix is independent from the incident field. The procedures discussed here must be repeated
like iterative matrix solution methods for each variation of the angle of observation.

Fig. 5.3a shows a holo' square cylinder as test structure with length L = 9X, side length of the
square a = 3,, wall thickness s = /10. This test object has been published in [201. Fig. 5.3b shows the
backscatter cros"-section n dependence from the aspect angle. The solid lines represent experimental re-
sults, the circles represent theoretical results of the first method discussed in this section and the
stars represent results of the second method [21.
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A lattice cell size of approximately 1/1A was selected for the first time-domain approach. Each cy-
linder wall was formed by 96 x 32 x I cells, and the overall lattice size was 112 x 48 x 48 cells. 661 ti.e
steps were used, equivalent to 31 cycles of the incident field. For the application of the second approach a
grid with 85 x 17 x 73 cells was used, see Fig. 5.4.



IL 22- I 0

a)
b)

Fig. 5.4
Grid for the hollow cylinder.
a) Outer grid surface,
b) Grid in a plane section
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6. CONCLUSION AND REMARKS FOR FURTHER WORK

In this paper the basic ideas of a variety of methods in electromagnetics are outlined in short. The
appropriate geometric model of each method is discussed in more detail. The requirements with respect to
the type of the model and with respect to the accuracy are established. For some models and methods an
estimation of the computer effort is given. For the following problems comparison between theory and expe-
riment has been drawn: radiation characteristic of an antenna installed on a helicopter, current distribu-
tion of a cube, radar cross-section of a structure with doubly reflecting surfaces, radar cross-section of
a hollow cylinder. Much more test objects are presented in the references cited.

Despite the fact that the number of validation tests increases in the publications there are some es-
sentials gaps in estimating the overall effectiveness of the methods for practical applications. In apply-
ing any of the methods for example the following problems are not satisfyingly clarified: incorporation of
oielectrir media into the model, examination of 3-0 structures with empty and loaded cavities and of struc-
tures in the resonance region, investigation of near-field properties. Clear statements concerning the sta-
ilitv of results against the type of model (e.g. wire-grid or surface patch model) and the refinement of

tne model are missing. In the IE-rlethod only a few results are available which are obtained by the inde-
oendent ise of either the EFIE or the MFIE for the same structure. The PO-method has to be extended tn
treat multiple reflections, creeping waves, bistatic and quasi near-field problems, and must be validated
'ar these cases. For the tao time-domain approaches discussed more results concerning cavity problems, in-
bernal resonances ind nonperfectly conducting bodies should be available since these techniques seem to be
scvantageos in these special cases. Further studies should also decl with demonstration of accuracy for
ucarse lattice sizes.

A 'urther 13p whi n should be closed is due to the classification of the methods in those which are
suited to treat electrically small structures (rigorous methods) and those which are advantageous in trea-
tinq electrically large structures (approximate methods). Studies seem to be useful to estimate the struc-
tire's dimensions where one type of solution method can be substituted by the other one without significant
loss in accuracy for the results. If for example the PO-method could be used instead of the IE-method one
could solve the problem much more economically.

Finally the study of the efficiency of the different approaches at the same test objects lan example
h,' been given in the paper) could learI to recomnndations of high practical interest. The test objects
.:u, be sePprted with increasins complexity to study effects of edge and corner diffraction, creeping
waves, cav-ty and resonance phenomena, perfectly and nonperfectly conducting bodies.

7. APPENDIX

7,1 RFFLFCTI-, COEFFICIENTS

Tn reflection coefficients at the surface of a panel consisting of N layers, see Fig. 7.1, are given
Z()I) o) - (2) (2) COS, (1 ) - I) ,s,;2)

cos iH (.2 R iE -(7.1, .R( 1 Z(2 COS, + Z 1 cosi7)
c1 z 2E

where Zi), Z2) are computed by the following recurrence formulas:

Z(n l)cos, (n
+l) + jz(n)c s,(n)tan(c(n)d(n))

.(n) iH z" c(n 2 7 1j TncCndY)Z(n)

1 (n+l)os,(n) + jz(n)cos(n+i)tan(c(n)d(n))

(7.4)) iE jC) 0 YZl~ n1J~} -~~) (n)
IFn iE csl tan(c d-

n 2,3. N-i, where (n), ,An) are input impedances of the nth layer for H- or F-polarization, re-i H _Q
spectively. For n = N, Eq;. (7.3) and (7.4) must be replaced by

,I )) (N) - Z(N) _ 7(N)
iH if
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The impedance of the nth layer is given by

z(n) - . r r where (n) ,(n) - jr(n)

is the complex relative permittivity (dielectric constant) of the nth layer.

rn) = (n) - j.(n) is the complex relative permeability, and c = k cos n )

, ) . n ) being the wavenumber of the nth laver and d(n) the thickness of the nth

layer. = 2-f angular frequency.

The value cosc,(n) can be derived from the equation

cos (n) ,r 2 -(1)

r Tr
The last ind the first lever are assumed to be of semi-infinite thickness. For more dptails see [7, 91.

7.2 PTD EDGE DIFFRACTION COEFFICIENTS

The coefficients of the backscattering matrix, see Eq. (4.12), are given by

17.6) D = D - DP + 2 DP e,m,em

sin 'e sin.
'7.7) Den ___ 1 (7.8) DP - U(--e) + e

cos cos _
nn

sin *e s I sin,,, e
n -n 1, (7.10) DpO = -U(--',) 1 +cOSc.I - n- s n1 1 l I -I e

os -cos n
sin 1

7.11i D eml COS: + cos' n 1 eml0: -s- ... . -: -.. ;- (7.12) o

Cos cos -n n

7 .1 3 ) C S = o s~ e 2

tan e plane of incidence

(7.14) uplane of

diffraction P

(7.15) li(X) f u

Fig. 7.2
Geometry of te bistatic wedge diffrac-
tion. In the backscattering case ws: e nt

V's
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The coefficients 0.2 are obtained from the coefficients Dvl by the following substitutions:

" -.n l ! 'e" ' le ' " Pe ' 2 ' 'Y" 2 "

Fore more details, see 116, 171.
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There are a lot of constraints on the grid. The grid has to be dense enough that you get accuracy but you
cannot afford, on current computers, to make the grid so dense it takes hours and hours of computational
time.

There is a tendancy to say that certain finite-volume procedures can give you a good solution on . grid
that is changing rapidly. Nevertheless, it is probably true that smooth grid variation enhances
accuracy. These are some of the constraints that we have to live with. I think that everybody recognizes
that body conforming grids simplify the application of boundary conditions and if you want to simulate
viscous flow at a high Reynolds number, a body conforming grid is almost a necessary constraint.

There have been several papers that have addressed the problems of skewness, aspect ratio,
discontinuities, how that effects algorithm stiffness and accuracy. That is just another problem that has
to be weighed into the overall situation.

This is an argument that I use quite a bit - I am typically a structured grid person -- the way that

organized data enhances machine efficiency and reduces memory requirements. The unstructured people would
say, yes, but, if you have a ged unstructured grid that adapts well, you can get by with so many fewer
grid points that it more than makes up for not having organized data. That is another argument, but we
really would, if possible, like organized data.

A grid choice, and I think we would all agree to this, should not lead to a computer code that is unduly
complex. Fluid mechanics has not evolked to the state that we can simply turn things on, that we know all
the physics and trust the codes. Most of us, when we do viscous flow calculations are in there modelling,
trying to use physical intuitions to improve things. As a consequence most codes are constantly in
change. You don't want codes to be so complex that you can't still make changes.

If we are going to be useful now, and I think all of us want to be useful to the designer now, the
methodology that we employ has to be compatible with current computers. A!- the same time we don't want to
be building something that is going to be obsolete 5 years from now.

Gridding has to be applicable, what these two dots here really say is that we have to make trade offs. We
can't expend hundreds of manhours building up a grid to get a solution. We have to reduce that cost.
Finally, whatever we do there at- certain valid physical approximations we can use. ',e should be able to
incorporate those into our procedures.

* l'ial~ S

AGARDograph No. 309 - Status 1986-1987

Assessment

Composite Grids:

* considerable capability exists, but set up time may measure in weeks
(unless similar topology).

* pacing items are subgridding, generating interface boundaries, and
surface gridding 4 4

Unstructured grids:

* high Reynolds number viscous flow simulations not carri ,l out

9 3D inviscid results for complex configurations not extensively validated

Those are the constraints that we are living with, and that is why thl area is hard - and why there are a
lot of things going on. Joe Thompson and I about two years ago put together an AGARDograph for which many
of you wrote articles. Our contribution was to collect those articles, put a summary article out in
front, and make an assessment of where things stood at that time. We collected all these things togethcz
in 1986-1987, so we are talking about two years ago. At that time, solutions were coming out of composite
grids for fairly complex configurations. The assessment we made was that considerable capability existed,
It was mainly of the multi-block type scheme, and that is still true I think. But the set-up time could
measure in weeks unless you were doing a topology that was extremely similar to what you had just done
before. So as a result of that, the pacing items at that time seemed to be sub-gridding, generating
interface boundaries, surface griddings - the geometry-type things. i put two little pluses here because
I think those problems have really been addressed by a lot of the authors here and a great deal of
improvement has occurred. Our ACARDo'qp" eallv dti -n1 Include any unstructured grid ccle-, probably
because of the bias of the people that collected articles for that AGARDograph. But also, because at that
time there weren't many three-dimensional solutions coming out on unstructured grids which had been

validated, and I don't think there were any (high Reynolds number) viscous flow solutions on an
unstructured grid. So we kind of ignored unstructured grids, but in truth, the composite grids weren't
much better off at that time.

Vie,,,,raph 4

AGARDograph No. 309 - Status 1986-1987

Recomm- ,,".'.ons:
3 lrface gridding, automation and quality, in considerable need for im-

provement. More emphasis on development of CAD tools suited to CFD
needs.

* Critical need for graphical interaction tools (workstations ) for setting
up surface grids, zonal boundaries, checking grid results...



In the AGARDograph we had made some recommendations that a lot more effort should be put on surface
gridding, automation of that procedure and more emphasis on quality of grids. The idea was that a lot of
this could be done with graphics -- workstations, CAD-CAM devices, and all of this should be automated as
much as possible. It was obvious that those kind of things were going to happen because the machinery was
becoming available, and again, I think that we have seen a lot of progress in that area at this meeting,
although those are areas where we can continue to make a lot of progress.
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PROGRESS

e solutions obtained about coniplex geonletries (fighters, transports, space
shuttle, turbomachinary...)

" more effective use of workstations

" progress with composite structured and unstructured grids

* team efforts organized

" grids and solutions for 3D configurations with inov;ug components

Thinking about some of the progress that has occurred since the AGARDograph, I just made these notes, and
I will go through this quickly. Since preparing the AGARDograph in mid-87, thinking about other meetings
that I have attended, as well as this one, it is clear that a lot of progress had been made in treating
complex geometries. We have seen solutions of fighters, transport aircraft, space shuttle, turbo
machinery, what have you. Workstations are really coming into being. Several papers have appeared
(unfortunately none of them were invited to this conference) on combining structured grids with
unstructured grids. Weatherwill for one, Nakahashi from Japan for another -- but I suppose we are not
going to invite Japanese to an AGARD conference. But these look very good r"' -cmbined structured and
unstructured grids is a very promising way to go. Aoreover, (perhaps this is from my viewpoint being a
researcher at NASA where we usually work pretty much as individual researchers) in this overall area the
complexity of the problem has caused a lot of people to come together and work together in teams. That
was very impressive. We have also seen some solutions for moving components, store separation and things
like that.
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RECOMMENDATIONS FOR NEAR TERM

" iore effective use of workstations -good progress here

" more use of composite structured and unstructured grids

* use of 'hairy' grids -niu ideas

* gain more experience with unsteady flows -and viscous flows
-if it doesn't extend to viscous flow, don't do it

* continue to improve grid generation algorithmis -and adaptive schemes

-validation needed, our responsibility, ne edicts from above

-improve grid smoothness

Sitting back in California I made up some recommendations. Since coming here I have tried to change some
of these. The first recommendation was to make more effective use of workstations, but as I have pointed
out several times, I think that we are doing a good job in trying to do that now.

I really think this is the wave of the future, if you like, the use of composite structured grids and
unstructured grids combined. In my way of thinking the structured grids are still the most efficient way
of getting solutions when they are appli able. It has been painted out many many times that when you get
really complicated g-ometries the structured grids break down, which is why we go to a composite
structured grid, the multi-block grids, but the unstructured grida seem to be more powerful and they seem
to be able to adapt to solution areas better. The smart, safe thing to say is let's combine the two in
one algorithm because I don't think that this is very difficult to do. The composite structured grids
already have interface-type-logic arrays, pointers, what have you, that are very similar to what you use
for unaLI.,, i-red erids. It is not very hard to adapt the flow algorithms to structured-unstructured
grids. I think that this is one wev to go, to get the efficiency and generality in one code.

Use of 'hairy' grids. This is a term I simply made up before comitig, adn .haL I mean is this. I still
want to think of viscous flow. What we want to go to is high Reynolds number viscous flow simulations,
and I think a good way to resolve a viscous flow is to have a boundary layer approximation near the
surface. Grid rays that leave the body normal to the surface allow you to come up with good
discretization techniques for pirking ,, the viscous terms in the bounda-y !y1 L, a.d also IliUb Vou Lo
ure implicit operators very easily in iaat near wali vicinity. I think when you get to fine viscous
near-wall grids you will want to use ray-like or hair-like grids. By 'hairy' grids, I also mean that we
stilU need to think of new ideas. If we sumarize what is going on here, there are really two main camps,
the multi-block camp and the unstructured camp. We saw a couple of other techniques that are a bit
different, and I would like to see those developed and continue, but we need new ideas.

Most of the calculations have been for steady flow. I think we need to gain more experience with unsteady
flow, although certainly we saw some beautiful unsteady solutions this afternoon. We really have to work
on viscous flow more. There has been very little done on viscous flow at this conference. I still take
the viewpoint that if the methods you are using won't extend to the Navier-Stokes equations, it is
probably not a good idea to use them. I will probably get some flak on that, we will see.
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This area used to be the main topic of grid generation - how do we create algorithms to generate grids.
At least for the structured grids, there doesn't seem to be much activity here, rather the work seems to
be focussed on how do we interface block grids together. For unstructured grids there is still a lot of
activity in this area - grid generation and grid adaptiveness.

This is a conference on grid generation, but not enough authors in my opinion spent time trying to show
that the grids that they have been devising really are adequate for getting good solutions. We still have
this problem of doing validation - and I think that validation is our responsibility. I don't want
management or someone from above saying that you can't publish a paper unless you 'validate' the results,
because I think that we want the flexibility to work on the problems at hand. At the same time we really
have to try to show that the solutions that we are getting right now on these grids are meaningful
solutions. So we have that responsibility.

A lot of the grids shown here were somewhat discontinuous, disjoint. It is true that some of the
numerical schemes can handle non-smooth grids, but I think we should put more emphasis on (and we actually
had a couple of papers talk about) improving grid smoothness, skewness, what have you.
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SUMMARY

* Grid generation remains a pacing item, but solutions about complex

coufigiwr~tion re being obtained. -not yct routinely

* Continued effort needed to make solutions easier and less costly to
obtain.
* I 11,c geometry definition, grid generation is a continuing problem that
needs resources and creativity.

-iana gem nt: this is still the driver, more important, for erainple. than turbuleicer

modcling!

In summary, I would say grid generation remains a pacing item, we are getting solutions, but not
routinely. I think that we have had a few people claim that we are getting close to routine, and I won't
dispute some of those claims. We still need to work in this area to make the solutions easier and less
costly to obtain. ve still need a lot of creativity, as this is a problem that is with us for a long
time. The last item I have added because I think it may be part of the job of the evaluator to tell some

of the management, and a lot of it is here, that this area is still really the driver in computational
fluid dynamics. Solution accuracy right now depends more on our ability to resolve a geometry accurately,

supplying good grid resolution, and getting good results quickly. These are much more critical than
something like turbulence modelling, as far as getting an overall good result. I think the emphasis (in
CFD) still has to be in this area. That may be controversial, and may get some discussion going.

Mr. W. Schmidt

We now wil start with our Round Table Discussion and we would like to ask many people to either comment
directly to Dr. Steger's comments or to raise any of the other questions that have been left open during
the last two days, or any new ideas that showed up.

Dr. P. Kutler, NASA Ames

Grid generation is very important. It is one area that I think we know a lot about. We can generate grid
insensitive solutions a lot easier than we can probably generate turbulence model insensitive solutions.
Therefore my emphasis I think as far as pacing elements go and the discipline of CFD would be that we need
more research in the area of turbulence models because there is a lot unknown about turbulence. I do
think that although ue can't routinely generate grids quickly, we can still very easily refine those grids
until we get solutions that are insensitive to the grid, and therefore, if there are errors in the
solutions, a good reason why there may be errors is because of the turbulence model.

The second comment regards the amount of time it takes to generate grids. I know that there is some
controversy especially from the unstructured people, or at least Tony Jameson from the conference we had
at NASA Ames back in March, about the amount of time it takes to set up a grid to do a computation,:l

solution. I tend to believe that it is not routine and does take on the order of weeks to do, but I have
heard counter views from Tony Jameson. I guess I would like to find out what the real story on this Is;
can we do grids in a matter of hours on complicated configurations or does it really take a matter of
weeks?

T. .kr, PrinceLon Lniversity

I was going to make a f-,- -- ie'tc = d m. -bc 1 a-6iL sKe e 'ause aftL or i the 4uestL~.. a best I
can. If -_ li abing an unstructured method such as the one I presented, how quickly can one generate a
mesh around a complete aircraft starting from the geometric definition? I assume that the definition of
the aircraft's surface is given as a well-defined set of patches such as one might have for a panel
method. Now one cin allow the triangulation to go ahead for just the aircraft's surface points and then
display that triangulation. In many cases when you do that, you will find that the quality of the mesh on
the surface is not as good as you would like, and it is necessary to interpolate extra points, extra
sections in varlour regions in order to get sufficient resolution in critical regions such as near the



wing body junction or around pylons or nacelles, It is an interactive procedure where you sit at the
workstation and repeat the triangulation. Typically, starting witL a new configuration that might take a
couple of days to do. When you are happy with the resolution of the surface mesh, the rest is entirely
automatic. The introduction of flow field points proceeds in an entirely automated way and is just a
matter of allowing the Cray computer to crunch away with it for 30 minutes or whatever, and the computer
will produce a mesh which you can then use to carry out a flowfield solution.

I would like to make a couple of comments on your summing up on the issue of unstructured versus
structured, one of the disadvantages of unstructured meshes which I didn't admit to, and which was not
brought out by my antagonists is the fact that the flow solvers for unstructured meshes are inevitably
less efficient because of the indirect addressing that is involved. It is much harder to vectorize
unstructured flowsolvers. Although you can vectirize tham to some extent, you don't vectorize as well.
Typically, an unstructured flow solver will be two to three times slower thc . the corresponding stuctured
flow solver.

Now I think that there are clearly cases, let us say of a wing alone, where there is absolutely no
difficult in producing a structured mesh. I think that for such an example there would be no point in
using an unstructured mesh. There are other situations, a complete aircraft I would dare suggest, ,._
an unstructured maih would be better. But I agree with you that in the future one will see a composite
approach. What we have seen so far, I believe, with composite approaches Is the use of a structured mesh
around the surface and unstructured meshes outside that. I think that is completely the opposite way to
which it should be done. The structured part of the mesh should cover the major part of the flow field
and it is only in the interior region close to the aircraft's surface, where it is difficult to mesh, that
one should go unstructured. I think that is the kind of composite mesh you .,eed, and I think you will
then reap the advantages of structured as well as unstructured meshes.

The final comment I want to make addresses this issue of mesh smoothness which everybody -,as talked
about. Really a great deal has been said about it from a kind of empirical or heuristic polit of view.
Very little work, as far as I see, has been done to try to address these issues theoretically. In ;ther
words, what one would like to see is some kind of theoretical prediction or measure of how imortant or

how bad mesh stretching is, mesh skewness is, point distribution is, and again that will depeid on the
type of solver we usc. It is true that some discretization schemes are more robust. Nevertheless, I
think that theoretical estimates which allow you to say yes, this mesh and this flow solver are perfectly
adequate, and this mesh and this flow solver are not, are needed in order to take some of the uncertainty
out of this business.

Dr. P. Kutler, NASA Ames

There is one other element that you have to include when you are looking at mesh quality and that is the
fluid physics that occurs, because that is where you are going to be getting your gradients. I think
Peter Eisemann can talk a little bit more about mesh quality. We talk a lot about grid quality, but I
don't think that we have derived any criteria on how to judge whether or not we have a good grid other
than by looking at it and saying it is good.

Mr. W. Schmidt

I could also make a proposal to look into the quality of meshes. You just build a windtunnel model
representing the surface by the mesh with all its patches, you test it and then you see if that is
adequate or not.

Mr. R. Bradley, General Dynamics

I would like to say that Joe's comments are right on. I agree with them 100%. I dr think that one of the
most critical issues that we face as users is in the grid area. Turbulence is important, but I think that
there is probably as much uncertainty in grids as there is in turbulence. At the present time I don't
have the computer power to keep reducing grid sizes until I get insensitivity. I am not sure I know how
far that is either, by the way. My basic feeling and my experience tells me that I really need to
understand and know better how to use the grids and how to gain confidence in them. I also agree with
Wolfgang that the best way to determine the credibility of your grid is with an experiment and I think the
validation issue that was missing in the conference is the key Issue for grids as well as for algorithms

and turbulence models.

Mr. J. Steger

I would like to agree with Dick Bradley. I don't think that any of our solutions are anywhere
grid-independent at this point. I know from my own problems that the geometry is mcrc important than
anything else as far as getting the right first order effects for a solution.

Mr. W.J. McCroskey, Ames Research Center

I think that there are several problems that will be more important in the future than perhaps some of the
ones we have seen today. I would be interested in the participants' comments on the relative merits of
struct,,red and unstructured or maybe a composite of the two on these problems. They are the following:
First - capturing lo I --nl outgoing waves, like perhaps acoustic waves, when you need details in the flow
field away from the body. Second - bodies in relative motion, which includes a store separation that has
been described here, turbomachinery with rows in relative motion and the rotor and body of helicopter
configurations. Third - concentrated vortices that move through important parts of the flow field that
may not be immediately adjacent to the body. Those are problems that haven't seen much attention here,
but I am curious about what the future holds vis-a-vis structured, unstructured, or combination thereof.



Clive Albone, RAE, Farnborough

Having listened to what Paul Kutler said about grid insensitivity and some other people hay zpoken about
it, I would like to be able to agree with him. If he were right that there are plenty of examples of grid
insensitivity, then clearly .urbulence modelling would take over as the main pacing item. However, when I
look at the papers that we have seen in the last two davs, there arc vcry few examples where people have
shown results of convergence under grid refinement by systematically doubling. I showed one example for
an extremely simple case where I ran four meshes (and I have good meshes on that simple example), but
there was still quite a lot of grid dependency. So if indeed there are plenty examples of grid
independence around, I would like to see some of them. Why didn't we see any at this conference?

Mr. A. Roshko, Cal Tech

I don't know anything about grid generation, but I wonder after listening to the discussion whether
anybody ever tries to calculate flow over a circular cylinder or a sphere or something like that, where, I
presume, the grid generation should be no problem at all.

Mr. J. Steger

It is a hard problem, because you have to go back to the problem that Jim McCroskey brought up. How do
you resolve the vortices and everything else that influences the flow field?

Mr. J. Slooff, NLR, Amsterdam

One of the aspects that I feel might become important in the future is that if you look at grid generation
in terms of what sort of problem it is, it is actually I think an optimization type of problem because one
has to compromise the various requirements in terms of grid complexity and grid quality and that sort of
thing. I wouldn't be surprised that in the future we will have some kind of combination of optimization
algorithms with grid generation approaches and in that respect variational approaches to the mesh
generation problem are also a very interesting option, I think. In my personal opinion we had quite a
good example of that in terms of the work of Mr. Jacquotte. I was much impressed by that and it is my
feeling that we will see a lot more of that sort of optimization approach in the future. I also have a
question for the unstructured people and that is do we really have a measure of the quality of the grids
in the sense of what Mr. Jacquotte was using.

Mr. P. Eiseman, Columbia University

I fee] that there is a measure of quality for both structured and unstructured, but I think that the
comment just made on grid quality was a rather narrow perspective on grid quality. It is just a few of
the quality features of a grid. Certainly, for example, orthogonality and smoothness are important. Also
you might consider the rate of growth of the grid cells as being important. Furthermore, it depends on
how much information you have. For example, you can inject the physics as Paul has mentioned or you can
inject the numerical methods you are dealing with. Taking available information into consideration, you
can now concentrate on the way in which you view the results. It is not necessarily a total integral type
of thing that you have minimized as you would in say a variational type of technique. There are a good
number of those as well. Variational techniques are good, but a measure of quality is a broader issue and
not quite as narrow as indicated.

Mr. T. Baker, Princeton University

I suppose Dr. Slooff threw out a challenge about the measure of mesh quality in unstructured meshes. I
believe that in the paper of Jacquottes which I was very impressed with, he was .howing that he can
achieve ,rLhugonality of his mesh; (3-D as well as 2-D), and also, to some degree, any mesh aspect ratio
he specified. With an unstructured mesh, as I alluded to in my talk, one can certainly base measures of
the element quality on such geometric characteristics as minimum edge length, maximum edge length,
in-radius, ircum radius.

It is possible to use measures based on the ratio of those characteristics to decide what the quality of
the particular individual elements is, and if necessary one can restructure the mesh to ensure that the
quality of all the elements is good. In that sense I think one does have some control and knowledge about
the quality of unstructured meshes. However, that is only dealing with the individual elements. As far
as the mesh connectivity is concerned, how many elements are incident on one edge for example, at the
moment one doesn't have a great deal of control over such matters, although that will depend to some
extent on the point distribution. So I think that with unstructured meshes one does have some degree of
control over the quality of the individual elements but further work is needed to ensure overall mesh
quality.

Mr. R. Lohner,

I would like to comment on the question that Jim McCroskey had. In particular the two example problems
that intrigued me most. These are a) moving bodies (say a store separation) and b) turbine blades. You
see a lot of runs which are done with structured grids. What you see particularly in the blade to blade
calculations is that when the wake of the first blade enters the grid belonging to the second blade, the
wake is simply lost. One can put a "lee C mesh on the one blade. However, when you go into the other
region, as the blades move one against each other, you lose totally the wake because the grid density on
one side does not correspond to the grid density on the other side. Either you take a completely fine
grid everywhere, which of course in 3-D is impossible, or you lose it. There are enough papers (e.g., at
least at the last Reno meeting there were two) which show that very clearly. I think that all of these
time dependent problems will only be tackled with adaptive refinement. As far as I can see the best way
to adaptively refine a mesh is with an unstructured mesh. It is just natural. It is so easy. That is
basically my view of the future.



Mr. P. Eiseman

That is a very convincing argument. I might add a few comments here. We have seen for example the
Chimera scheme which is currently a structured type of approacn which does handle mesh movement. But
looking a little further into the future at least for block structures and that technology; we don't have
it now, but I think that the next field that people will address and that will be done is what I would
call an automatic topology generator. If we had such a generator what would then happen is that we would
be able to very efficiently remesh, have all the advantages of structured grids, and be able to have
motion like for example, store separations where the body comes out and tumbles. So T think that if this
wer. like the horse races, I would say that yes the unstructured and chimera schemes are ahead of the
game, but that might not be for very long.

Mr. Van Ingen, Delft

I think that we should come back to the issue of what is the worst problem, turbulence modelling or the
mesh generation, because two managers have spoken up and the result is about 50/50; and I think that is
very dangerous. I think, what is important is, that you look at the rate of progress in both fields and
then you must come to the conclusion, as far as I can see it anyway, that the rate of progress in grid
generation is much better than in turbulence modelling. Even if it is 50/50 at this moment in time, it
will not be in a few years from now. It is very dangerous to claim that tut-bulcnce modclling is not so
important at this moment.

Mr. J. Steg2r

I don't think that I claimed thaL it wasn't important. I think that what I was trying to claim is that
the big payoff is obtained by putting the emphasis in this particular area. I would also argue that it is
difficult and maybe even useless to try to do turbulence modelling if your turbulence model is ctually
trying to compensate for errors in the grid. You have to get those other errors out of there first to
know how well your turbulence model is doing.

Mr. W. Schmidt

In fact, you need a very good grid to do turbulence modelling.

Mr. J. Steger

It may be possible that turbulence modelling will never work. So you try to put your money in an area
where you know you are going to get some results.

Mr. R. Graves, NASA Head quarters

I am also one of these managers who has to decide between these areas at times. I would like to make a
quick comment on two observations. One is the turbulence modeliing problem or turbulence in general in mv
view is the last grand challenge in fluid mechanics and therefore is ar intellectually stimulating
challenge and onc in which a lot of researchers like to work on in terms of understanding the physics,
because the physics are still unknown. Whereas grid generation, and I tend to agree with some of the
comments which have just been made, is more of an engineering problem, one of once we define wlat grid
quality is, it becomes an optimization problem. It is a problem on which a lot of progress has been made
and will continue to be made on. From that standpoint when I look at balancing research, that is research
between turbulence, turbulence modelling, and grid generation, I think for the future we have been putting
our efforts in turbulence and turbulence modelling because that is where the critical problems still are
and I think that the grid optimization problem will be solved in the near future whereas we may not solve
the turbulence problem for a number of years.

Mr. W. Schmidt

This might be a good 'inal word on this 50/SO business. From my point of view, just checking through all
the papers, I have found actually one area missing somewhat and this is a more Indepth look into the
flexibility as far as configurational changes is concerned. For instance, if you start designing or
developing a new aircraft you start with a wing body and add a nacelle and you add a tail and you add
control surfaces and so forth. As it stands now almost everybody as far as I see from the papers will
start from scratch everytime he is doing a new calculation rather than using the existing mesh and adding
something or just changing something. The same is true if you think of che design problems that we had in
the first days. If you really make an attempt to apply a design method on a new wing body configuration,
you start redesigning the wing with an inverse method that is a finite difference, a finite volume, or a
finite element type, you will definitely end up with new meshes. Does that imply that you do new mesh
generations every cycle, every tlme that you get a modification of the shape of what is going on. I was
really missing this aspect in the whole meeting this time. I think that we should really look into this
for future Improvements.

We now have reached our time limit and we should stop this meeting. On behalf of the Committee of this
Specialists Meeting, I would like to thank all authors that gave their very nice prese.,tations, also all
those observers that came over here and gave contributions by making comments. I think that we have had
two very interesting days and got presentations on all topics we had asked for in our call for papers.

My last Thank You is to Joe Steger and Paul Kutler, both of you being so kind to step in the two gaps we
had. You gave us some very Interesting information along with our theme. Thank you all very much, and I
would like to hand this over now for the final remarks from the Panel Chairman.
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Mr. 1). Peckham

Thank you Wolfgang. Now it is time to bring our 64th meeting of the Fluid Dynamics Panel to a close. I hope you found the
two Specialists' Meetings this week both informative and stimulating and that you will return to your computer terminals
ready to imnlement more efficient mesh generation methods, he prepared to run your programs in an inverse m'riner and
apply optimization techniques to them. On your behalf I would like to thank the Program Committees for both ot these
Specialists' Meetings, and in particular the chairmen, Profezsor Slooff and Dr. Schmidt and the members of the Committee
who acted as Session Chairmen, thank you very much for your efforts. Next I wish to thank our Norwegian hosts for
everything they have done to ensure the success of our meeting here in Loen. In particular our thanks go to Mrs. lnge Hoff.
Major of the Stryn commune who gave the welcoming address on Monday and the slide show, and in particular our two
Norwegian panel members who have had so much to do in organizing this meeting, Professor Ytrehus and Professor
Norstrud. On Tuesday evening we had a very interesting video presentation on Surface Effect Ships from the Illstein group,
and I ask you to join me in thanking Dr. Thurder of the group for this very interesting presentation and very enjoyable
reception which followed. Once everything is in place for a meeting. the smooth runing depends very much on the staff and
our Panel Executive Member, Michael Fischer and his secretary Anne-Marie Rivault, together with the technicians Mr. Colin
and Mr. Koolen who have operated the projection and audio equipment so efficiently during the week. I invite you to join
me in thanking them all. Last but not least, at the back of the room throughout the week our team of interpreters have had
to work very hard and often at very great speed. I ask you to thank them, that is Mrs. Beck-Hertz, Mrs. Lamon and
Miss Mazaud.

Thank you very much. ladies and Gentlemen, that concludes our meeting.
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